Cargando…

Cold water fish gelatin modification by a natural phenolic cross-linker (ferulic acid and caffeic acid)

Nowadays use of edible films and coatings is increasing due to their biodegradability and environment friendly properties. Fish gelatin obtained from fish skin wastage can be used as an appropriate protein compound for replacing pork gelatin to produce edible film. In this study films were prepared...

Descripción completa

Detalles Bibliográficos
Autores principales: Araghi, Maryam, Moslehi, Zeinab, Mohammadi Nafchi, Abdorreza, Mostahsan, Amir, Salamat, Nima, Daraei Garmakhany, Amir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576961/
https://www.ncbi.nlm.nih.gov/pubmed/26405523
http://dx.doi.org/10.1002/fsn3.230
Descripción
Sumario:Nowadays use of edible films and coatings is increasing due to their biodegradability and environment friendly properties. Fish gelatin obtained from fish skin wastage can be used as an appropriate protein compound for replacing pork gelatin to produce edible film. In this study films were prepared by combination of fish gelatin and different concentration (0%, 1%, 3%, and 5%) of two phenolic compounds (caffeic acid and ferulic acid). The film was prepared at pH > 10 and temperature of 60˚c under continuous injection of O(2) and addition of the plasticizer sorbitol/glycerol. Results showed that solubility, oxygen permeability, and water vapor permeability were decreased for caffeic acid and the highest effect was observed at concentration of 5%. Solubility had a linear relationship with concentration of phenolic compound in film containing ferulic acid, however, no significant change was observed in vapor and O(2) permeability. A comparison between two phenolic compounds showed that caffeic acid had the highest effect in decreasing solubility, water vapor permeability, and oxygen permeability. Caffeic acid is more effective phenolic compound compared with Ferulic acid that can increase safety of biodegradable packaging by improving their barrier and physicochemical properties.