Cargando…
Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish
Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test method...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578392/ https://www.ncbi.nlm.nih.gov/pubmed/26425408 http://dx.doi.org/10.3762/bjnano.6.160 |
_version_ | 1782391110194167808 |
---|---|
author | Zhou, Zitao Son, Jino Harper, Bryan Zhou, Zheng Harper, Stacey |
author_facet | Zhou, Zitao Son, Jino Harper, Bryan Zhou, Zheng Harper, Stacey |
author_sort | Zhou, Zitao |
collection | PubMed |
description | Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L). Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to zebrafish (Danio rerio). |
format | Online Article Text |
id | pubmed-4578392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-45783922015-09-30 Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish Zhou, Zitao Son, Jino Harper, Bryan Zhou, Zheng Harper, Stacey Beilstein J Nanotechnol Full Research Paper Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L). Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to zebrafish (Danio rerio). Beilstein-Institut 2015-07-20 /pmc/articles/PMC4578392/ /pubmed/26425408 http://dx.doi.org/10.3762/bjnano.6.160 Text en Copyright © 2015, Zhou et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Zhou, Zitao Son, Jino Harper, Bryan Zhou, Zheng Harper, Stacey Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
title | Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
title_full | Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
title_fullStr | Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
title_full_unstemmed | Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
title_short | Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
title_sort | influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578392/ https://www.ncbi.nlm.nih.gov/pubmed/26425408 http://dx.doi.org/10.3762/bjnano.6.160 |
work_keys_str_mv | AT zhouzitao influenceofsurfacechemicalpropertiesonthetoxicityofengineeredzincoxidenanoparticlestoembryoniczebrafish AT sonjino influenceofsurfacechemicalpropertiesonthetoxicityofengineeredzincoxidenanoparticlestoembryoniczebrafish AT harperbryan influenceofsurfacechemicalpropertiesonthetoxicityofengineeredzincoxidenanoparticlestoembryoniczebrafish AT zhouzheng influenceofsurfacechemicalpropertiesonthetoxicityofengineeredzincoxidenanoparticlestoembryoniczebrafish AT harperstacey influenceofsurfacechemicalpropertiesonthetoxicityofengineeredzincoxidenanoparticlestoembryoniczebrafish |