Cargando…

Why base-catalyzed isomerization of N-propargyl amides yields mostly allenamides rather than ynamides

The base-catalyzed isomerization of N-propargylamides or carbamates may furnish N-allenyl compounds (allenamides/allencarbamates) or further evolve to N-alkynyl compounds (ynamides or yncarbamates). The particular fate of this reaction varies from experiment to experiment and there is no clear rule...

Descripción completa

Detalles Bibliográficos
Autor principal: Navarro-Vázquez, Armando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578395/
https://www.ncbi.nlm.nih.gov/pubmed/26425200
http://dx.doi.org/10.3762/bjoc.11.156
Descripción
Sumario:The base-catalyzed isomerization of N-propargylamides or carbamates may furnish N-allenyl compounds (allenamides/allencarbamates) or further evolve to N-alkynyl compounds (ynamides or yncarbamates). The particular fate of this reaction varies from experiment to experiment and there is no clear rule for predicting the reaction outcome for a particular structure. With the support of ab initio and DFT computations, this work shows that observed results can be explained by assuming an exchange equilibrium between energetically close N-propargyl, allenyl and N-alkynyl forms and that the reaction outcome correlates to a particular equilibrium mixture. Due to the very small energy gap between the N-allenyl and N-alkynyl forms, small structural changes may easily alter the equilibrium position, explaining the variety of observed experimental results. Based on CBS-QB3 computations, the ωB97 functional provided reasonably accurate isomerization energies and could successfully predict the experimentally observed behavior for several examples from the literature.