Cargando…

TIN: An R Package for Transcriptome Instability Analysis

Alternative splicing is a key regulatory mechanism for gene expression, vital for the proper functioning of eukaryotic cells. Disruption of normal pre-mRNA splicing has the potential to cause and reinforce human disease. Owing to rapid advances in high-throughput technologies, it is now possible to...

Descripción completa

Detalles Bibliográficos
Autores principales: Johannessen, Bjarne, Sveen, Anita, Skotheim, Rolf I
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578549/
https://www.ncbi.nlm.nih.gov/pubmed/26448683
http://dx.doi.org/10.4137/CIN.S31363
Descripción
Sumario:Alternative splicing is a key regulatory mechanism for gene expression, vital for the proper functioning of eukaryotic cells. Disruption of normal pre-mRNA splicing has the potential to cause and reinforce human disease. Owing to rapid advances in high-throughput technologies, it is now possible to identify novel mRNA isoforms and detect aberrant splicing patterns on a genome scale, across large data sets. Analogous to the genomic types of instability describing cancer genomes (eg, chromosomal instability and microsatellite instability), transcriptome instability (TIN) has recently been proposed as a splicing-related genome-wide characteristic of certain solid cancers. We present the R package TIN, available from Bioconductor, which implements a set of methods for TIN analysis based on exon-level microarray expression profiles. TIN provides tools for estimating aberrant exon usage across samples and for analyzing correlation patterns between TIN and splicing factor expression levels.