Cargando…
Isocitrate dehydrogenase mutations: new opportunities for translational research
Over the last decade, comprehensive genome-wide sequencing studies have enabled us to find out unexpected genetic alterations of metabolism in cancer. An example is the identification of arginine missense mutations of isocitrate dehydrogenases-1 and -2 (IDH1/2) in glioma, acute myeloid leukemia (AML...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Biochemistry and Molecular Biology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578565/ https://www.ncbi.nlm.nih.gov/pubmed/25787993 http://dx.doi.org/10.5483/BMBRep.2015.48.5.021 |
Sumario: | Over the last decade, comprehensive genome-wide sequencing studies have enabled us to find out unexpected genetic alterations of metabolism in cancer. An example is the identification of arginine missense mutations of isocitrate dehydrogenases-1 and -2 (IDH1/2) in glioma, acute myeloid leukemia (AML), chondrosarcomas, and cholangiocarcinoma. These alterations are closely associated with the production of a new stereospecific metabolite, (R)-2-hydroxyglutarate (R-2HG). A large number of follow-up studies have been performed to address the molecular mechanisms of IDH1/2 mutations underlying how these events contribute to malignant transformation. In the meanwhile, the development of selective mutant IDH1/2 chemical inhibitors is being actively pursued in the scientific community and pharmaceutical industry. The present review article briefly discusses the important findings that highlight the molecular mechanisms of IDH1/2 mutations in cancer and provides a current status for development of selective mutant IDH1/2 chemical inhibitors. [BMB Reports 2015; 48(5): 266-270] |
---|