Cargando…
Boosting for high-dimensional two-class prediction
BACKGROUND: In clinical research prediction models are used to accurately predict the outcome of the patients based on some of their characteristics. For high-dimensional prediction models (the number of variables greatly exceeds the number of samples) the choice of an appropriate classifier is cruc...
Autores principales: | Blagus, Rok, Lusa, Lara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578758/ https://www.ncbi.nlm.nih.gov/pubmed/26390865 http://dx.doi.org/10.1186/s12859-015-0723-9 |
Ejemplares similares
-
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Improved shrunken centroid classifiers for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Joint use of over- and under-sampling techniques and cross-validation for the development and assessment of prediction models
por: Blagus, Rok, et al.
Publicado: (2015) -
Incidence Trends and Geographical Variability of Pediatric Inflammatory Bowel Disease in Slovenia: A Nationwide Study
por: Urlep, Darja, et al.
Publicado: (2015)