Cargando…
c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line
Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs), resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing’s sarcoma (ES), we cond...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578885/ https://www.ncbi.nlm.nih.gov/pubmed/26393798 http://dx.doi.org/10.1371/journal.pone.0138560 |
_version_ | 1782391182807007232 |
---|---|
author | Kawano, Masanori Tanaka, Kazuhiro Itonaga, Ichiro Iwasaki, Tatsuya Tsumura, Hiroshi |
author_facet | Kawano, Masanori Tanaka, Kazuhiro Itonaga, Ichiro Iwasaki, Tatsuya Tsumura, Hiroshi |
author_sort | Kawano, Masanori |
collection | PubMed |
description | Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs), resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing’s sarcoma (ES), we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs). Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2) were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES. |
format | Online Article Text |
id | pubmed-4578885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45788852015-10-01 c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line Kawano, Masanori Tanaka, Kazuhiro Itonaga, Ichiro Iwasaki, Tatsuya Tsumura, Hiroshi PLoS One Research Article Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs), resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing’s sarcoma (ES), we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs). Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2) were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES. Public Library of Science 2015-09-22 /pmc/articles/PMC4578885/ /pubmed/26393798 http://dx.doi.org/10.1371/journal.pone.0138560 Text en © 2015 Kawano et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kawano, Masanori Tanaka, Kazuhiro Itonaga, Ichiro Iwasaki, Tatsuya Tsumura, Hiroshi c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line |
title | c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line |
title_full | c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line |
title_fullStr | c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line |
title_full_unstemmed | c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line |
title_short | c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing’s Sarcoma Cell Line |
title_sort | c-myc represses tumor-suppressive micrornas, let-7a, mir-16 and mir-29b, and induces cyclin d2-mediated cell proliferation in ewing’s sarcoma cell line |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578885/ https://www.ncbi.nlm.nih.gov/pubmed/26393798 http://dx.doi.org/10.1371/journal.pone.0138560 |
work_keys_str_mv | AT kawanomasanori cmycrepressestumorsuppressivemicrornaslet7amir16andmir29bandinducescyclind2mediatedcellproliferationinewingssarcomacellline AT tanakakazuhiro cmycrepressestumorsuppressivemicrornaslet7amir16andmir29bandinducescyclind2mediatedcellproliferationinewingssarcomacellline AT itonagaichiro cmycrepressestumorsuppressivemicrornaslet7amir16andmir29bandinducescyclind2mediatedcellproliferationinewingssarcomacellline AT iwasakitatsuya cmycrepressestumorsuppressivemicrornaslet7amir16andmir29bandinducescyclind2mediatedcellproliferationinewingssarcomacellline AT tsumurahiroshi cmycrepressestumorsuppressivemicrornaslet7amir16andmir29bandinducescyclind2mediatedcellproliferationinewingssarcomacellline |