Cargando…

Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope

Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties b...

Descripción completa

Detalles Bibliográficos
Autores principales: Burgess, Jacob A.J., Malavolti, Luigi, Lanzilotto, Valeria, Mannini, Matteo, Yan, Shichao, Ninova, Silviya, Totti, Federico, Rolf-Pissarczyk, Steffen, Cornia, Andrea, Sessoli, Roberta, Loth, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579601/
https://www.ncbi.nlm.nih.gov/pubmed/26359203
http://dx.doi.org/10.1038/ncomms9216
_version_ 1782391283781730304
author Burgess, Jacob A.J.
Malavolti, Luigi
Lanzilotto, Valeria
Mannini, Matteo
Yan, Shichao
Ninova, Silviya
Totti, Federico
Rolf-Pissarczyk, Steffen
Cornia, Andrea
Sessoli, Roberta
Loth, Sebastian
author_facet Burgess, Jacob A.J.
Malavolti, Luigi
Lanzilotto, Valeria
Mannini, Matteo
Yan, Shichao
Ninova, Silviya
Totti, Federico
Rolf-Pissarczyk, Steffen
Cornia, Andrea
Sessoli, Roberta
Loth, Sebastian
author_sort Burgess, Jacob A.J.
collection PubMed
description Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe(4) SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe(4) molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.
format Online
Article
Text
id pubmed-4579601
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-45796012015-10-01 Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope Burgess, Jacob A.J. Malavolti, Luigi Lanzilotto, Valeria Mannini, Matteo Yan, Shichao Ninova, Silviya Totti, Federico Rolf-Pissarczyk, Steffen Cornia, Andrea Sessoli, Roberta Loth, Sebastian Nat Commun Article Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe(4) SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe(4) molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface. Nature Pub. Group 2015-09-11 /pmc/articles/PMC4579601/ /pubmed/26359203 http://dx.doi.org/10.1038/ncomms9216 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Burgess, Jacob A.J.
Malavolti, Luigi
Lanzilotto, Valeria
Mannini, Matteo
Yan, Shichao
Ninova, Silviya
Totti, Federico
Rolf-Pissarczyk, Steffen
Cornia, Andrea
Sessoli, Roberta
Loth, Sebastian
Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope
title Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope
title_full Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope
title_fullStr Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope
title_full_unstemmed Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope
title_short Magnetic fingerprint of individual Fe(4) molecular magnets under compression by a scanning tunnelling microscope
title_sort magnetic fingerprint of individual fe(4) molecular magnets under compression by a scanning tunnelling microscope
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579601/
https://www.ncbi.nlm.nih.gov/pubmed/26359203
http://dx.doi.org/10.1038/ncomms9216
work_keys_str_mv AT burgessjacobaj magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT malavoltiluigi magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT lanzilottovaleria magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT manninimatteo magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT yanshichao magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT ninovasilviya magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT tottifederico magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT rolfpissarczyksteffen magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT corniaandrea magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT sessoliroberta magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope
AT lothsebastian magneticfingerprintofindividualfe4molecularmagnetsundercompressionbyascanningtunnellingmicroscope