Cargando…

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass direct...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchard, Edward T A, Feldpausch, Ted R, Brienen, Roel J W, Lopez-Gonzalez, Gabriela, Monteagudo, Abel, Baker, Timothy R, Lewis, Simon L, Lloyd, Jon, Quesada, Carlos A, Gloor, Manuel, ter Steege, Hans, Meir, Patrick, Alvarez, Esteban, Araujo-Murakami, Alejandro, Aragão, Luiz E O C, Arroyo, Luzmila, Aymard, Gerardo, Banki, Olaf, Bonal, Damien, Brown, Sandra, Brown, Foster I, Cerón, Carlos E, Chama Moscoso, Victor, Chave, Jerome, Comiskey, James A, Cornejo, Fernando, Corrales Medina, Massiel, Da Costa, Lola, Costa, Flavia R C, Di Fiore, Anthony, Domingues, Tomas F, Erwin, Terry L, Frederickson, Todd, Higuchi, Niro, Honorio Coronado, Euridice N, Killeen, Tim J, Laurance, William F, Levis, Carolina, Magnusson, William E, Marimon, Beatriz S, Marimon Junior, Ben Hur, Mendoza Polo, Irina, Mishra, Piyush, Nascimento, Marcelo T, Neill, David, Núñez Vargas, Mario P, Palacios, Walter A, Parada, Alexander, Pardo Molina, Guido, Peña-Claros, Marielos, Pitman, Nigel, Peres, Carlos A, Poorter, Lourens, Prieto, Adriana, Ramirez-Angulo, Hirma, Restrepo Correa, Zorayda, Roopsind, Anand, Roucoux, Katherine H, Rudas, Agustin, Salomão, Rafael P, Schietti, Juliana, Silveira, Marcos, de Souza, Priscila F, Steininger, Marc K, Stropp, Juliana, Terborgh, John, Thomas, Raquel, Toledo, Marisol, Torres-Lezama, Armando, van Andel, Tinde R, van der Heijden, Geertje M F, Vieira, Ima C G, Vieira, Simone, Vilanova-Torre, Emilio, Vos, Vincent A, Wang, Ophelia, Zartman, Charles E, Malhi, Yadvinder, Phillips, Oliver L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579864/
https://www.ncbi.nlm.nih.gov/pubmed/26430387
http://dx.doi.org/10.1111/geb.12168
_version_ 1782391335655833600
author Mitchard, Edward T A
Feldpausch, Ted R
Brienen, Roel J W
Lopez-Gonzalez, Gabriela
Monteagudo, Abel
Baker, Timothy R
Lewis, Simon L
Lloyd, Jon
Quesada, Carlos A
Gloor, Manuel
ter Steege, Hans
Meir, Patrick
Alvarez, Esteban
Araujo-Murakami, Alejandro
Aragão, Luiz E O C
Arroyo, Luzmila
Aymard, Gerardo
Banki, Olaf
Bonal, Damien
Brown, Sandra
Brown, Foster I
Cerón, Carlos E
Chama Moscoso, Victor
Chave, Jerome
Comiskey, James A
Cornejo, Fernando
Corrales Medina, Massiel
Da Costa, Lola
Costa, Flavia R C
Di Fiore, Anthony
Domingues, Tomas F
Erwin, Terry L
Frederickson, Todd
Higuchi, Niro
Honorio Coronado, Euridice N
Killeen, Tim J
Laurance, William F
Levis, Carolina
Magnusson, William E
Marimon, Beatriz S
Marimon Junior, Ben Hur
Mendoza Polo, Irina
Mishra, Piyush
Nascimento, Marcelo T
Neill, David
Núñez Vargas, Mario P
Palacios, Walter A
Parada, Alexander
Pardo Molina, Guido
Peña-Claros, Marielos
Pitman, Nigel
Peres, Carlos A
Poorter, Lourens
Prieto, Adriana
Ramirez-Angulo, Hirma
Restrepo Correa, Zorayda
Roopsind, Anand
Roucoux, Katherine H
Rudas, Agustin
Salomão, Rafael P
Schietti, Juliana
Silveira, Marcos
de Souza, Priscila F
Steininger, Marc K
Stropp, Juliana
Terborgh, John
Thomas, Raquel
Toledo, Marisol
Torres-Lezama, Armando
van Andel, Tinde R
van der Heijden, Geertje M F
Vieira, Ima C G
Vieira, Simone
Vilanova-Torre, Emilio
Vos, Vincent A
Wang, Ophelia
Zartman, Charles E
Malhi, Yadvinder
Phillips, Oliver L
author_facet Mitchard, Edward T A
Feldpausch, Ted R
Brienen, Roel J W
Lopez-Gonzalez, Gabriela
Monteagudo, Abel
Baker, Timothy R
Lewis, Simon L
Lloyd, Jon
Quesada, Carlos A
Gloor, Manuel
ter Steege, Hans
Meir, Patrick
Alvarez, Esteban
Araujo-Murakami, Alejandro
Aragão, Luiz E O C
Arroyo, Luzmila
Aymard, Gerardo
Banki, Olaf
Bonal, Damien
Brown, Sandra
Brown, Foster I
Cerón, Carlos E
Chama Moscoso, Victor
Chave, Jerome
Comiskey, James A
Cornejo, Fernando
Corrales Medina, Massiel
Da Costa, Lola
Costa, Flavia R C
Di Fiore, Anthony
Domingues, Tomas F
Erwin, Terry L
Frederickson, Todd
Higuchi, Niro
Honorio Coronado, Euridice N
Killeen, Tim J
Laurance, William F
Levis, Carolina
Magnusson, William E
Marimon, Beatriz S
Marimon Junior, Ben Hur
Mendoza Polo, Irina
Mishra, Piyush
Nascimento, Marcelo T
Neill, David
Núñez Vargas, Mario P
Palacios, Walter A
Parada, Alexander
Pardo Molina, Guido
Peña-Claros, Marielos
Pitman, Nigel
Peres, Carlos A
Poorter, Lourens
Prieto, Adriana
Ramirez-Angulo, Hirma
Restrepo Correa, Zorayda
Roopsind, Anand
Roucoux, Katherine H
Rudas, Agustin
Salomão, Rafael P
Schietti, Juliana
Silveira, Marcos
de Souza, Priscila F
Steininger, Marc K
Stropp, Juliana
Terborgh, John
Thomas, Raquel
Toledo, Marisol
Torres-Lezama, Armando
van Andel, Tinde R
van der Heijden, Geertje M F
Vieira, Ima C G
Vieira, Simone
Vilanova-Torre, Emilio
Vos, Vincent A
Wang, Ophelia
Zartman, Charles E
Malhi, Yadvinder
Phillips, Oliver L
author_sort Mitchard, Edward T A
collection PubMed
description AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. LOCATION: Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 METHODS: Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. RESULTS: The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. MAIN CONCLUSIONS: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
format Online
Article
Text
id pubmed-4579864
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-45798642015-09-29 Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites Mitchard, Edward T A Feldpausch, Ted R Brienen, Roel J W Lopez-Gonzalez, Gabriela Monteagudo, Abel Baker, Timothy R Lewis, Simon L Lloyd, Jon Quesada, Carlos A Gloor, Manuel ter Steege, Hans Meir, Patrick Alvarez, Esteban Araujo-Murakami, Alejandro Aragão, Luiz E O C Arroyo, Luzmila Aymard, Gerardo Banki, Olaf Bonal, Damien Brown, Sandra Brown, Foster I Cerón, Carlos E Chama Moscoso, Victor Chave, Jerome Comiskey, James A Cornejo, Fernando Corrales Medina, Massiel Da Costa, Lola Costa, Flavia R C Di Fiore, Anthony Domingues, Tomas F Erwin, Terry L Frederickson, Todd Higuchi, Niro Honorio Coronado, Euridice N Killeen, Tim J Laurance, William F Levis, Carolina Magnusson, William E Marimon, Beatriz S Marimon Junior, Ben Hur Mendoza Polo, Irina Mishra, Piyush Nascimento, Marcelo T Neill, David Núñez Vargas, Mario P Palacios, Walter A Parada, Alexander Pardo Molina, Guido Peña-Claros, Marielos Pitman, Nigel Peres, Carlos A Poorter, Lourens Prieto, Adriana Ramirez-Angulo, Hirma Restrepo Correa, Zorayda Roopsind, Anand Roucoux, Katherine H Rudas, Agustin Salomão, Rafael P Schietti, Juliana Silveira, Marcos de Souza, Priscila F Steininger, Marc K Stropp, Juliana Terborgh, John Thomas, Raquel Toledo, Marisol Torres-Lezama, Armando van Andel, Tinde R van der Heijden, Geertje M F Vieira, Ima C G Vieira, Simone Vilanova-Torre, Emilio Vos, Vincent A Wang, Ophelia Zartman, Charles E Malhi, Yadvinder Phillips, Oliver L Glob Ecol Biogeogr Research Papers AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. LOCATION: Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 METHODS: Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. RESULTS: The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. MAIN CONCLUSIONS: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space. BlackWell Publishing Ltd 2014-08 2014-04-22 /pmc/articles/PMC4579864/ /pubmed/26430387 http://dx.doi.org/10.1111/geb.12168 Text en © 2014 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Papers
Mitchard, Edward T A
Feldpausch, Ted R
Brienen, Roel J W
Lopez-Gonzalez, Gabriela
Monteagudo, Abel
Baker, Timothy R
Lewis, Simon L
Lloyd, Jon
Quesada, Carlos A
Gloor, Manuel
ter Steege, Hans
Meir, Patrick
Alvarez, Esteban
Araujo-Murakami, Alejandro
Aragão, Luiz E O C
Arroyo, Luzmila
Aymard, Gerardo
Banki, Olaf
Bonal, Damien
Brown, Sandra
Brown, Foster I
Cerón, Carlos E
Chama Moscoso, Victor
Chave, Jerome
Comiskey, James A
Cornejo, Fernando
Corrales Medina, Massiel
Da Costa, Lola
Costa, Flavia R C
Di Fiore, Anthony
Domingues, Tomas F
Erwin, Terry L
Frederickson, Todd
Higuchi, Niro
Honorio Coronado, Euridice N
Killeen, Tim J
Laurance, William F
Levis, Carolina
Magnusson, William E
Marimon, Beatriz S
Marimon Junior, Ben Hur
Mendoza Polo, Irina
Mishra, Piyush
Nascimento, Marcelo T
Neill, David
Núñez Vargas, Mario P
Palacios, Walter A
Parada, Alexander
Pardo Molina, Guido
Peña-Claros, Marielos
Pitman, Nigel
Peres, Carlos A
Poorter, Lourens
Prieto, Adriana
Ramirez-Angulo, Hirma
Restrepo Correa, Zorayda
Roopsind, Anand
Roucoux, Katherine H
Rudas, Agustin
Salomão, Rafael P
Schietti, Juliana
Silveira, Marcos
de Souza, Priscila F
Steininger, Marc K
Stropp, Juliana
Terborgh, John
Thomas, Raquel
Toledo, Marisol
Torres-Lezama, Armando
van Andel, Tinde R
van der Heijden, Geertje M F
Vieira, Ima C G
Vieira, Simone
Vilanova-Torre, Emilio
Vos, Vincent A
Wang, Ophelia
Zartman, Charles E
Malhi, Yadvinder
Phillips, Oliver L
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
title Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
title_full Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
title_fullStr Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
title_full_unstemmed Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
title_short Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
title_sort markedly divergent estimates of amazon forest carbon density from ground plots and satellites
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579864/
https://www.ncbi.nlm.nih.gov/pubmed/26430387
http://dx.doi.org/10.1111/geb.12168
work_keys_str_mv AT mitchardedwardta markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT feldpauschtedr markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT brienenroeljw markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT lopezgonzalezgabriela markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT monteagudoabel markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT bakertimothyr markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT lewissimonl markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT lloydjon markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT quesadacarlosa markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT gloormanuel markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT tersteegehans markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT meirpatrick markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT alvarezesteban markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT araujomurakamialejandro markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT aragaoluizeoc markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT arroyoluzmila markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT aymardgerardo markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT bankiolaf markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT bonaldamien markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT brownsandra markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT brownfosteri markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT ceroncarlose markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT chamamoscosovictor markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT chavejerome markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT comiskeyjamesa markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT cornejofernando markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT corralesmedinamassiel markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT dacostalola markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT costaflaviarc markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT difioreanthony markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT dominguestomasf markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT erwinterryl markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT fredericksontodd markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT higuchiniro markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT honoriocoronadoeuridicen markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT killeentimj markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT laurancewilliamf markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT leviscarolina markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT magnussonwilliame markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT marimonbeatrizs markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT marimonjuniorbenhur markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT mendozapoloirina markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT mishrapiyush markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT nascimentomarcelot markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT neilldavid markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT nunezvargasmariop markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT palacioswaltera markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT paradaalexander markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT pardomolinaguido markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT penaclarosmarielos markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT pitmannigel markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT perescarlosa markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT poorterlourens markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT prietoadriana markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT ramirezangulohirma markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT restrepocorreazorayda markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT roopsindanand markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT roucouxkatherineh markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT rudasagustin markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT salomaorafaelp markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT schiettijuliana markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT silveiramarcos markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT desouzapriscilaf markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT steiningermarck markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT stroppjuliana markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT terborghjohn markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT thomasraquel markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT toledomarisol markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT torreslezamaarmando markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT vanandeltinder markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT vanderheijdengeertjemf markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT vieiraimacg markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT vieirasimone markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT vilanovatorreemilio markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT vosvincenta markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT wangophelia markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT zartmancharlese markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT malhiyadvinder markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites
AT phillipsoliverl markedlydivergentestimatesofamazonforestcarbondensityfromgroundplotsandsatellites