Cargando…
Inference of regulatory networks with a convergence improved MCMC sampler
BACKGROUND: One of the goals of the Systems Biology community is to have a detailed map of all biological interactions in an organism. One small yet important step in this direction is the creation of biological networks from post-genomic data. Bayesian networks are a very promising model for the in...
Autores principales: | Agostinho, Nilzair B., Machado, Karina S., Werhli, Adriano V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581096/ https://www.ncbi.nlm.nih.gov/pubmed/26399857 http://dx.doi.org/10.1186/s12859-015-0734-6 |
Ejemplares similares
-
A Neural Network MCMC Sampler That Maximizes Proposal Entropy
por: Li, Zengyi, et al.
Publicado: (2021) -
Comparing the reconstruction of regulatory pathways with distinct Bayesian networks inference methods
por: Werhli, Adriano V
Publicado: (2012) -
Gradient-based MCMC samplers for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2016) -
Discretization and MCMC convergence assessment
por: Robert, Christian
Publicado: (1998) -
Bayesian Inference on Malignant Breast Cancer in Nigeria: A Diagnosis of MCMC Convergence
por: Ogunsakin, Ropo Ebenezer, et al.
Publicado: (2017)