Cargando…

Multiple alignment comparison of the non-structural genes of three strains of equine influenza viruses (H3N8) isolated in Morocco

BACKGROUND: Three equine influenza viruses, A/equine/Nador/1/1997(H3N8), A/equine/Essaouira/2/2004(H3N8), and A/equine/Essaouira/3/2004(H3N8), were isolated from different Equidae during local respiratory disease outbreaks in Morocco in 1997 and 2004. Their non-structural (NS) genes were amplified a...

Descripción completa

Detalles Bibliográficos
Autores principales: Boukharta, Mohamed, Azlmat, Souad, Elharrak, Mehdi, Ennaji, My Mustapha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581100/
https://www.ncbi.nlm.nih.gov/pubmed/26404167
http://dx.doi.org/10.1186/s13104-015-1441-0
Descripción
Sumario:BACKGROUND: Three equine influenza viruses, A/equine/Nador/1/1997(H3N8), A/equine/Essaouira/2/2004(H3N8), and A/equine/Essaouira/3/2004(H3N8), were isolated from different Equidae during local respiratory disease outbreaks in Morocco in 1997 and 2004. Their non-structural (NS) genes were amplified and sequenced. RESULTS: The results show high homology of NS nucleotide sequences of A/equine/Nador/1/1997 with European strains (i.e., A/equine/newmarket/2/93 and A/equine/Grobois/1/1998) and clustered into the European lineage. However, NS gene of A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8) strains indicated high homology with equine influenza strains that had circulated before 1990 (A/equine/Fontainbleu/1/1979(H3N8), which belonged to a pre-divergent phase Amino acid sequence comparison of the NS1 protein with reference strain A/equine/Miami/1963(H3N8) shows that the A/equine/Nador/1/1997(H3N8) strain has 12 substitutions at the residues D/24/N, R/44/K, S/48/I, R/67/Q, A/86/V, E/139/K, A/112/T, E/186/K, L/185/F, A/223/E, S/213/T and S/228/P. In both A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8) strains, the NS1 sequences present one common mutation at the residue: S/228/P. CONCLUSION: It seems that all of these substitutions are not produced at the key residues of the RNA-binding domain (RBD) and the effector domain (ED). Consequently, we can suppose that they will not affect the potency of inhibition of cellular defences, and the virulence of the Moroccan equine strains will be maintained.