Cargando…
Porosome in Cystic Fibrosis
Macromolecular structures embedded in the cell plasma membrane called ‘porosomes’, are involved in the regulated fractional release of intravesicular contents from cells during secretion. Porosomes range in size from 15 nm in neurons and astrocytes to 100-180 nm in the exocrine pancreas and neuroend...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Applied Systems srl
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581455/ https://www.ncbi.nlm.nih.gov/pubmed/26413568 http://dx.doi.org/10.15190/d.2014.16 |
_version_ | 1782391567048245248 |
---|---|
author | Jena, Bhanu P. |
author_facet | Jena, Bhanu P. |
author_sort | Jena, Bhanu P. |
collection | PubMed |
description | Macromolecular structures embedded in the cell plasma membrane called ‘porosomes’, are involved in the regulated fractional release of intravesicular contents from cells during secretion. Porosomes range in size from 15 nm in neurons and astrocytes to 100-180 nm in the exocrine pancreas and neuroendocrine cells. Porosomes have been isolated from a number of cells, and their morphology, composition, and functional reconstitution well documented. The 3D contour map of the assembly of proteins within the porosome complex, and its native X-ray solution structure at sub-nm resolution has also advanced. This understanding now provides a platform to address diseases that may result from secretory defects. Water and ion binding to mucin impart hydration, critical for regulating viscosity of the mucus in the airways epithelia. Appropriate viscosity is required for the movement of mucus by the underlying cilia. Hence secretion of more viscous mucus prevents its proper transport, resulting in chronic and fatal airways disease such as cystic fibrosis (CF). CF is caused by the malfunction of CF transmembrane conductance regulator (CFTR), a chloride channel transporter, resulting in viscous mucus in the airways. Studies in mice lacking functional CFTR secrete highly viscous mucous that adhered to the epithelium. Since CFTR is known to interact with the t-SNARE protein syntaxin-1A, and with the chloride channel CLC-3, which are also components of the porosome complex, the interactions between CFTR and the porosome complex in the mucin-secreting human airway epithelial cell line Calu-3 was hypothesized and tested. Results from the study demonstrate the presence of approximately 100 nm in size porosome complex composed of 34 proteins at the cell plasma membrane in Calu-3 cells, and the association of CFTR with the complex. In comparison, the nuclear pore complex measures 120 nm and is comprised of over 500 protein molecules. The involvement of CFTR in porosome-mediated mucin secretion is hypothesized, and is currently being tested. |
format | Online Article Text |
id | pubmed-4581455 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Applied Systems srl |
record_format | MEDLINE/PubMed |
spelling | pubmed-45814552015-09-24 Porosome in Cystic Fibrosis Jena, Bhanu P. Discoveries (Craiova) Review Article Macromolecular structures embedded in the cell plasma membrane called ‘porosomes’, are involved in the regulated fractional release of intravesicular contents from cells during secretion. Porosomes range in size from 15 nm in neurons and astrocytes to 100-180 nm in the exocrine pancreas and neuroendocrine cells. Porosomes have been isolated from a number of cells, and their morphology, composition, and functional reconstitution well documented. The 3D contour map of the assembly of proteins within the porosome complex, and its native X-ray solution structure at sub-nm resolution has also advanced. This understanding now provides a platform to address diseases that may result from secretory defects. Water and ion binding to mucin impart hydration, critical for regulating viscosity of the mucus in the airways epithelia. Appropriate viscosity is required for the movement of mucus by the underlying cilia. Hence secretion of more viscous mucus prevents its proper transport, resulting in chronic and fatal airways disease such as cystic fibrosis (CF). CF is caused by the malfunction of CF transmembrane conductance regulator (CFTR), a chloride channel transporter, resulting in viscous mucus in the airways. Studies in mice lacking functional CFTR secrete highly viscous mucous that adhered to the epithelium. Since CFTR is known to interact with the t-SNARE protein syntaxin-1A, and with the chloride channel CLC-3, which are also components of the porosome complex, the interactions between CFTR and the porosome complex in the mucin-secreting human airway epithelial cell line Calu-3 was hypothesized and tested. Results from the study demonstrate the presence of approximately 100 nm in size porosome complex composed of 34 proteins at the cell plasma membrane in Calu-3 cells, and the association of CFTR with the complex. In comparison, the nuclear pore complex measures 120 nm and is comprised of over 500 protein molecules. The involvement of CFTR in porosome-mediated mucin secretion is hypothesized, and is currently being tested. Applied Systems srl 2014-09-28 /pmc/articles/PMC4581455/ /pubmed/26413568 http://dx.doi.org/10.15190/d.2014.16 Text en Copyright: © 2014, Bhanu P. Jena and Applied Systems http://creativecommons.org/licenses/by/4.0/ This article is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Review Article Jena, Bhanu P. Porosome in Cystic Fibrosis |
title | Porosome in Cystic Fibrosis |
title_full | Porosome in Cystic Fibrosis |
title_fullStr | Porosome in Cystic Fibrosis |
title_full_unstemmed | Porosome in Cystic Fibrosis |
title_short | Porosome in Cystic Fibrosis |
title_sort | porosome in cystic fibrosis |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581455/ https://www.ncbi.nlm.nih.gov/pubmed/26413568 http://dx.doi.org/10.15190/d.2014.16 |
work_keys_str_mv | AT jenabhanup porosomeincysticfibrosis |