Cargando…
Forest Walk Methods for Localizing Body Joints from Single Depth Image
We present multiple random forest methods for human pose estimation from single depth images that can operate in very high frame rate. We introduce four algorithms: random forest walk, greedy forest walk, random forest jumps, and greedy forest jumps. The proposed approaches can accurately infer the...
Autores principales: | Jung, Ho Yub, Lee, Soochahn, Heo, Yong Seok, Yun, Il Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581738/ https://www.ncbi.nlm.nih.gov/pubmed/26402029 http://dx.doi.org/10.1371/journal.pone.0138328 |
Ejemplares similares
-
A Novel Cascade Classifier for Automatic Microcalcification Detection
por: Shin, Seung Yeon, et al.
Publicado: (2015) -
Automatic aortic valve landmark localization in coronary CT angiography using colonial walk
por: Al, Walid Abdullah, et al.
Publicado: (2018) -
Directional Joint Bilateral Filter for Depth Images
por: Le, Anh Vu, et al.
Publicado: (2014) -
HRDepthNet: Depth Image-Based Marker-Less Tracking of Body Joints
por: Büker, Linda Christin, et al.
Publicado: (2021) -
Markerless Knee Joint Position Measurement Using Depth Data during Stair Walking
por: Ogawa, Ami, et al.
Publicado: (2017)