Cargando…

Propofol suppresses proliferation and invasion of glioma cells by upregulating microRNA-218 expression

Propofol (2,6-diisopropylphenol) is a commonly used intravenous anesthetic agent. The present study aimed to assess the effect of propofol on the proliferation and invasion of human glioma cells, and to determine the potential underlying molecular mechanisms. The effects of propofol on U373 glioblas...

Descripción completa

Detalles Bibliográficos
Autores principales: XU, JINQUAN, XU, WEIYUN, ZHU, JIAQUN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581763/
https://www.ncbi.nlm.nih.gov/pubmed/26133092
http://dx.doi.org/10.3892/mmr.2015.4014
Descripción
Sumario:Propofol (2,6-diisopropylphenol) is a commonly used intravenous anesthetic agent. The present study aimed to assess the effect of propofol on the proliferation and invasion of human glioma cells, and to determine the potential underlying molecular mechanisms. The effects of propofol on U373 glioblastoma cell proliferation, apoptosis and invasion were detected by an MTT assay, caspase-3 activity measurement and a Matrigel™ invasion assay, respectively. MicroRNA (miR)-218 expression and matrix metalloproteinase (MMP)-2 protein expression levels were analyzed by quantitative polymerase chain reaction and western blot analysis, respectively. In addition, miR-218 precursor was transfected into the cells to assess whether overexpression of miR-218 could affect MMP-2 expression. Anti-miR-218 was transfected into the cells to evaluate the role of miR-218 in the effects of propofol on the biological behavior of glioma cells. The results of the present study demonstrated that propofol significantly increased the expression levels of miR-218, inhibited U373 cell proliferation and invasion, and facilitated apoptosis. In addition, treatment with propofol efficiently reduced MMP-2 protein expression levels, and overexpression of miR-218 also decreased MMP-2 protein expression levels. Whereas, neutralization of miR-218 using the anti-miR-218 antibody reversed the effects of propofol on the biological behavior of U373 cells, and on the inhibition of MMP-2 protein expression. In conclusion, propofol may effectively suppress proliferation and invasion, and induce the apoptosis of glioma cells, at least partially through upregulation of miR-218 expression.