Cargando…

Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)

Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dong-Zhen, Yu, Guang-Qiang, Yi, Shan-Cheng, Zhang, Yinan, Kong, De-Xin, Wang, Man-Qun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582152/
https://www.ncbi.nlm.nih.gov/pubmed/26435694
http://dx.doi.org/10.7150/ijbs.12528
_version_ 1782391656098562048
author Li, Dong-Zhen
Yu, Guang-Qiang
Yi, Shan-Cheng
Zhang, Yinan
Kong, De-Xin
Wang, Man-Qun
author_facet Li, Dong-Zhen
Yu, Guang-Qiang
Yi, Shan-Cheng
Zhang, Yinan
Kong, De-Xin
Wang, Man-Qun
author_sort Li, Dong-Zhen
collection PubMed
description Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.
format Online
Article
Text
id pubmed-4582152
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-45821522015-10-02 Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae) Li, Dong-Zhen Yu, Guang-Qiang Yi, Shan-Cheng Zhang, Yinan Kong, De-Xin Wang, Man-Qun Int J Biol Sci Research Paper Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP. Ivyspring International Publisher 2015-09-15 /pmc/articles/PMC4582152/ /pubmed/26435694 http://dx.doi.org/10.7150/ijbs.12528 Text en © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.
spellingShingle Research Paper
Li, Dong-Zhen
Yu, Guang-Qiang
Yi, Shan-Cheng
Zhang, Yinan
Kong, De-Xin
Wang, Man-Qun
Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)
title Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)
title_full Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)
title_fullStr Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)
title_full_unstemmed Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)
title_short Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)
title_sort structure-based analysis of the ligand-binding mechanism for dhelobp21, a c-minus odorant binding protein, from dastarcus helophoroides (fairmaire; coleoptera: bothrideridae)
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582152/
https://www.ncbi.nlm.nih.gov/pubmed/26435694
http://dx.doi.org/10.7150/ijbs.12528
work_keys_str_mv AT lidongzhen structurebasedanalysisoftheligandbindingmechanismfordhelobp21acminusodorantbindingproteinfromdastarcushelophoroidesfairmairecoleopterabothrideridae
AT yuguangqiang structurebasedanalysisoftheligandbindingmechanismfordhelobp21acminusodorantbindingproteinfromdastarcushelophoroidesfairmairecoleopterabothrideridae
AT yishancheng structurebasedanalysisoftheligandbindingmechanismfordhelobp21acminusodorantbindingproteinfromdastarcushelophoroidesfairmairecoleopterabothrideridae
AT zhangyinan structurebasedanalysisoftheligandbindingmechanismfordhelobp21acminusodorantbindingproteinfromdastarcushelophoroidesfairmairecoleopterabothrideridae
AT kongdexin structurebasedanalysisoftheligandbindingmechanismfordhelobp21acminusodorantbindingproteinfromdastarcushelophoroidesfairmairecoleopterabothrideridae
AT wangmanqun structurebasedanalysisoftheligandbindingmechanismfordhelobp21acminusodorantbindingproteinfromdastarcushelophoroidesfairmairecoleopterabothrideridae