Cargando…

A Chlamydia effector recruits CEP170 to reprogram host microtubule organization

The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is crucial for Chlamydia uptake, inclusion...

Descripción completa

Detalles Bibliográficos
Autores principales: Dumoux, Maud, Menny, Anais, Delacour, Delphine, Hayward, Richard D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582400/
https://www.ncbi.nlm.nih.gov/pubmed/26220855
http://dx.doi.org/10.1242/jcs.169318
Descripción
Sumario:The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is crucial for Chlamydia uptake, inclusion biogenesis and cell exit. Here, we demonstrate how a Chlamydia effector rearranges the microtubule (MT) network by initiating organization of the MTs at the inclusion surface. We identified an inclusion-localized effector that is sufficient to interfere with MT assembly, which we named inclusion protein acting on MTs (IPAM). We established that IPAM recruits and stimulates the centrosomal protein 170 kDa (CEP170) to hijack the MT organizing functions of the host cell. We show that CEP170 is essential for chlamydial control of host MT assembly, and is required for inclusion morphogenesis and bacterial infectivity. Together, we demonstrate how a pathogen effector reprograms the host MT network to support its intracellular development.