Cargando…
The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1
Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582637/ https://www.ncbi.nlm.nih.gov/pubmed/26413197 http://dx.doi.org/10.1186/s40793-015-0038-5 |
Sumario: | Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 4.5 Mb chromosome has an average G + C content of 39 %, and encodes 3523 protein-coding genes, but has no plasmid or prophage sequences. The gene content is very similar to that of M. barkeri Fusaro which was isolated from freshwater sediment. CM1 has a full complement of genes for all three methanogenesis pathways, but its genome shows many differences from those of other sequenced rumen methanogens. Consequently strategies to mitigate ruminant methane need to include information on the different methanogens that occur in the rumen. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40793-015-0038-5) contains supplementary material, which is available to authorized users. |
---|