Cargando…

C-STrap Sample Preparation Method—In-Situ Cysteinyl Peptide Capture for Bottom-Up Proteomics Analysis in the STrap Format

Recently we introduced the concept of Suspension Trapping (STrap) for bottom-up proteomics sample processing that is based upon SDS-mediated protein extraction, swift detergent removal and rapid reactor-type protein digestion in a quartz depth filter trap. As the depth filter surface is made of sili...

Descripción completa

Detalles Bibliográficos
Autores principales: Zougman, Alexandre, Banks, Rosamonde E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583295/
https://www.ncbi.nlm.nih.gov/pubmed/26407052
http://dx.doi.org/10.1371/journal.pone.0138775
Descripción
Sumario:Recently we introduced the concept of Suspension Trapping (STrap) for bottom-up proteomics sample processing that is based upon SDS-mediated protein extraction, swift detergent removal and rapid reactor-type protein digestion in a quartz depth filter trap. As the depth filter surface is made of silica, it is readily modifiable with various functional groups using the silane coupling chemistries. Thus, during the digest, peptides possessing specific features could be targeted for enrichment by the functionalized depth filter material while non-targeted peptides could be collected as an unbound distinct fraction after the digest. In the example presented here the quartz depth filter surface is functionalized with the pyridyldithiol group therefore enabling reversible in-situ capture of the cysteine-containing peptides generated during the STrap-based digest. The described C-STrap method retains all advantages of the original STrap methodology and provides robust foundation for the conception of the targeted in-situ peptide fractionation in the STrap format for bottom-up proteomics. The presented data support the method’s use in qualitative and semi-quantitative proteomics experiments.