Cargando…

Novel therapy for locally advanced triple-negative breast cancer

To evaluate a novel therapy for triple-negative breast cancer (TNBC), the biological responses to vitamin K3 (VK3) should be considered with the understanding of the features of breast cancer. In human breast cancer cell lines, the effects of VK3 on cell growth inhibition and the cellular signaling...

Descripción completa

Detalles Bibliográficos
Autores principales: YAMADA, ATSUKO, OSADA, SHINJI, TANAHASHI, TOSHIYUKI, MATSUI, SATOSHI, SASAKI, YOSHIYUKI, TANAKA, YOSHIHIRO, OKUMURA, NAOKI, MATSUHASHI, NOBUHISA, TAKAHASHI, TAKAO, YAMAGUCHI, KAZUYA, YOSHIDA, KAZUHIRO
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583525/
https://www.ncbi.nlm.nih.gov/pubmed/26252842
http://dx.doi.org/10.3892/ijo.2015.3113
Descripción
Sumario:To evaluate a novel therapy for triple-negative breast cancer (TNBC), the biological responses to vitamin K3 (VK3) should be considered with the understanding of the features of breast cancer. In human breast cancer cell lines, the effects of VK3 on cell growth inhibition and the cellular signaling pathway were determined by MTT assay and western blotting. In the in vivo study, a subcutaneous tumor model of breast cancer was created, VK3 was injected into the subcutaneous tumors, and tumor size was measured. The IC(50) of VK3 for breast cancer cells was calculated to be 11.3–25.1 μM. VK3 induced phosphorylation of whole tyrosine and epidermal growth factor receptor. VK3 mediated phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) for 30 min. ERK but not JNK phosphorylation was maintained for at least 6 h. In contrast, another antioxidant agent, catalase, showed no effect on either ERK phosphorylation or growth inhibition. On built-up tumors under the skin of mice, local treatment with VK3 was effective in a time- and dose-dependent manner, and the experiments for total tumor volume also showed a dose-dependent effect of VK3. The expression of phosphorylated ERK was clearly detected at 10.9 times the control in tumor tissue, whereas ethanol itself showed no effect. In conclusion, ERK plays a critical role in VK3-induced growth inhibition, and it will be the focus of next steps in the development of molecular therapy for TNBC.