Cargando…
Transcriptional profiling of CRP-regulated genes in deep-sea bacterium Shewanella piezotolerans WP3
The cAMP receptor protein (CRP) is a conserved regulator in bacteria and involved in regulation of energy metabolism, such as glucose, galactose, and citrate (Green et al., 2014 [1]). As an important catabolite activator protein, it has been well characterized in model microorganism such as Escheric...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583620/ https://www.ncbi.nlm.nih.gov/pubmed/26484223 http://dx.doi.org/10.1016/j.gdata.2015.04.019 |
Sumario: | The cAMP receptor protein (CRP) is a conserved regulator in bacteria and involved in regulation of energy metabolism, such as glucose, galactose, and citrate (Green et al., 2014 [1]). As an important catabolite activator protein, it has been well characterized in model microorganism such as Escherichia coli. However, our understanding of the roles of CRP in deep-sea bacteria is rather limited. To indentify the function of CRP, we performed whole genome transcriptional profiling using a custom designed microarray which contains 95% open reading frames of Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1914 m (Xiao et al., 2007 [2]; Wang et al., 2008 [3]). Here we describe the experimental procedures and methods in detail to reproduce the results (available at Gene Expression Omnibus database under GSE67731 and GSE67732) and provide resource to be employed for comparative analyses of CRP regulon and the regulatory network of anaerobic respiration in microorganisms which inhabited in different environments, and thus broaden our understanding of mechanism of bacteria against various environment stresses. |
---|