Cargando…
Gene expression profiling by high throughput sequencing to determine signatures for the bovine receptive uterus at early gestation
The uterus plays a central role among the reproductive tissues in the context of early embryo-maternal communication and a successful pregnancy depends on a complex series of endometrial molecular and cellular events. The factors responsible for the initial interaction between maternal and embryonic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584001/ https://www.ncbi.nlm.nih.gov/pubmed/26484233 http://dx.doi.org/10.1016/j.gdata.2015.05.030 |
Sumario: | The uterus plays a central role among the reproductive tissues in the context of early embryo-maternal communication and a successful pregnancy depends on a complex series of endometrial molecular and cellular events. The factors responsible for the initial interaction between maternal and embryonic tissues, leading to the establishment of pregnancy, remain poorly understood. In this context, Illumina's next-generation sequencing technology has been used to discover the uterine transcriptome signature that is favourable for ongoing pregnancy. More specifically, the present report documents on a retrospective in vivo study in which data on pregnancy outcome were linked to uterine gene expression signatures on day 6 (bovine model). Using the RNA-Seq method, 14.654 reference genes were effectively analysed for differential expression between pregnant and non-pregnant uterine tissue. Transcriptome data revealed that 216 genes were differently expressed when comparing uterine tissue from pregnant and non-pregnant cows. All read sequences were deposited in the Sequence Read Archive (SRA) of the NCBI (http://www.ncbi.nlm.nih.gov/sra). An overview of the gene expression data has been deposited in NCBI's Gene Expression Omnibus (GEO) and is accessible through GEO Series accession number GSE65117. This allows the research community to enhance reproducibility and allows for new discoveries by comparing datasets of signatures linked to receptivity and/or pregnancy success. The resulting information can serve as tool to identify valuable and urgently needed biomarkers for scoring maternal receptivity and even for accurate detection of early pregnancy, which is a matter of cross-species interest. Beyond gene expression analysis as a marker tool, the RNA-Seq information on pregnant uterine tissue can be used to gain novel mechanistic insights, such as by identifying alternative splicing events, allele-specific expression, and rare and novel transcripts that might be involved in the onset of maternal receptivity. This concept is unique and provides a new approach towards strategies that are highly needed to improve efficiency of fertility treatments. |
---|