Cargando…
Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease
The aim of this study was to determine the accuracy of fuzzy rule-based classification that could noninvasively predict CAD based on myocardial perfusion scan test and clinical-epidemiological variables. This was a cross-sectional study in which the characteristics, the results of myocardial perfusi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584041/ https://www.ncbi.nlm.nih.gov/pubmed/26448783 http://dx.doi.org/10.1155/2015/564867 |
_version_ | 1782391928326717440 |
---|---|
author | Mohammadpour, Reza Ali Abedi, Seyed Mohammad Bagheri, Somayeh Ghaemian, Ali |
author_facet | Mohammadpour, Reza Ali Abedi, Seyed Mohammad Bagheri, Somayeh Ghaemian, Ali |
author_sort | Mohammadpour, Reza Ali |
collection | PubMed |
description | The aim of this study was to determine the accuracy of fuzzy rule-based classification that could noninvasively predict CAD based on myocardial perfusion scan test and clinical-epidemiological variables. This was a cross-sectional study in which the characteristics, the results of myocardial perfusion scan (MPS), and coronary artery angiography of 115 patients, 62 (53.9%) males, in Mazandaran Heart Center in the north of Iran have been collected. We used membership functions for medical variables by reviewing the related literature. To improve the classification performance, we used Ishibuchi et al. and Nozaki et al. methods by adjusting the grade of certainty CF (j) of each rule. This system includes 144 rules and the antecedent part of all rules has more than one part. The coronary artery disease data used in this paper contained 115 samples. The data was classified into four classes, namely, classes 1 (normal), 2 (stenosis in one single vessel), 3 (stenosis in two vessels), and 4 (stenosis in three vessels) which had 39, 35, 17, and 24 subjects, respectively. The accuracy in the fuzzy classification based on if-then rule was 92.8 percent if classification result was considered based on rule selection by expert, while it was 91.9 when classification result was obtained according to the equation. To increase the classification rate, we deleted the extra rules to reduce the fuzzy rules after introducing the membership functions. |
format | Online Article Text |
id | pubmed-4584041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-45840412015-10-07 Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease Mohammadpour, Reza Ali Abedi, Seyed Mohammad Bagheri, Somayeh Ghaemian, Ali Comput Math Methods Med Research Article The aim of this study was to determine the accuracy of fuzzy rule-based classification that could noninvasively predict CAD based on myocardial perfusion scan test and clinical-epidemiological variables. This was a cross-sectional study in which the characteristics, the results of myocardial perfusion scan (MPS), and coronary artery angiography of 115 patients, 62 (53.9%) males, in Mazandaran Heart Center in the north of Iran have been collected. We used membership functions for medical variables by reviewing the related literature. To improve the classification performance, we used Ishibuchi et al. and Nozaki et al. methods by adjusting the grade of certainty CF (j) of each rule. This system includes 144 rules and the antecedent part of all rules has more than one part. The coronary artery disease data used in this paper contained 115 samples. The data was classified into four classes, namely, classes 1 (normal), 2 (stenosis in one single vessel), 3 (stenosis in two vessels), and 4 (stenosis in three vessels) which had 39, 35, 17, and 24 subjects, respectively. The accuracy in the fuzzy classification based on if-then rule was 92.8 percent if classification result was considered based on rule selection by expert, while it was 91.9 when classification result was obtained according to the equation. To increase the classification rate, we deleted the extra rules to reduce the fuzzy rules after introducing the membership functions. Hindawi Publishing Corporation 2015 2015-09-13 /pmc/articles/PMC4584041/ /pubmed/26448783 http://dx.doi.org/10.1155/2015/564867 Text en Copyright © 2015 Reza Ali Mohammadpour et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mohammadpour, Reza Ali Abedi, Seyed Mohammad Bagheri, Somayeh Ghaemian, Ali Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease |
title | Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease |
title_full | Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease |
title_fullStr | Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease |
title_full_unstemmed | Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease |
title_short | Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease |
title_sort | fuzzy rule-based classification system for assessing coronary artery disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584041/ https://www.ncbi.nlm.nih.gov/pubmed/26448783 http://dx.doi.org/10.1155/2015/564867 |
work_keys_str_mv | AT mohammadpourrezaali fuzzyrulebasedclassificationsystemforassessingcoronaryarterydisease AT abediseyedmohammad fuzzyrulebasedclassificationsystemforassessingcoronaryarterydisease AT bagherisomayeh fuzzyrulebasedclassificationsystemforassessingcoronaryarterydisease AT ghaemianali fuzzyrulebasedclassificationsystemforassessingcoronaryarterydisease |