Cargando…

Adaptive Evolution of CENP-A in Percid Fishes

Centromeric protein A (CENP-A) is the epigenetic determinant of centromeres. This protein has been shown to be adaptively evolving in a number of animal and plant species. In a previous communication we were able to demonstrate that signs of adaptive evolution were detected in the comparison of CENP...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbey, Harriet N. A., Kral, Leos G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584323/
https://www.ncbi.nlm.nih.gov/pubmed/26193324
http://dx.doi.org/10.3390/genes6030662
Descripción
Sumario:Centromeric protein A (CENP-A) is the epigenetic determinant of centromeres. This protein has been shown to be adaptively evolving in a number of animal and plant species. In a previous communication we were able to demonstrate that signs of adaptive evolution were detected in the comparison of CENP-A sequences from three percid fish species. In this study we isolated the CENP-A gene from eight additional species from the Percidae family. With these sequences and those previously obtained, we carried out a more robust statistical analysis of codon specific positive selection in CENP-A coding sequences of eleven percid species. We were able to demonstrate that at least two amino acid positions within the N-terminal tail are under strong positive selection and that one of these positions is potentially a substrate for phosphorylation. While nonsynonymous substitutions were detected in the histone fold domain, these were not statistically supported as resulting from positive selection.