Cargando…

Encapsulation in PLGA-PEG enhances 9- nitro-camptothecin cytotoxicity to human ovarian carcinoma cell line through apoptosis pathway

Ovarian cancer is the fifth leading cause of the cancer-related death among women. 9-nitrocamptothecin (9-NC) is a water-insoluble derivative of camptothecin used for the treatment of patients with advanced ovarian cancer. Previous studies showed that the encapsulation of 9-NC in poly (lactic-co-gly...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi, F., Derakhshandeh, K., Jalalizadeh, A., Mostafaie, A., Hosseinzadeh, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584455/
https://www.ncbi.nlm.nih.gov/pubmed/26487893
Descripción
Sumario:Ovarian cancer is the fifth leading cause of the cancer-related death among women. 9-nitrocamptothecin (9-NC) is a water-insoluble derivative of camptothecin used for the treatment of patients with advanced ovarian cancer. Previous studies showed that the encapsulation of 9-NC in poly (lactic-co-glycolic acid, PLGA) nanoparticles increased the cytotoxic effect of the drug on different cancer cell lines. In the present study, the cytotoxic effects of 9-NC, 9-NC-loaded PLGA and PLGA-polyethylene glycol (PLGA-PEG) nanoparticles with varying degree of PEG (5, 10, and 15%) were evaluated on human ovarian carcinoma cell line. Furthermore, the mode of cell death induced by 9-NC and the optimized 9-NC-loaded PLGA-PEG nanoparticles on A2780 cell line were investigated. 9-NC incorporating nanoparticles were prepared by nanopercipitation method and their physicochemical characteristics were evaluated using standard methods. The results showed that activation of caspase-3 and -9 significantly increased by free 9-NC and PLGA-PEG loaded nanoparticles in A2780 cells. In contrast to the free drug which increased the activation of caspase-8, 9-NC-loaded PLGA-PEG nanoparticles did not alter the activation of caspase-8. Collectively, it appears that apoptosis induced by 9-NC incorporated in PLGA-PEG 5% occurred through the activation of caspase-9 rather than activation of caspase-8 which is the mediator of extrinsic pathway. Moreover, our results confirmed that 9-NC in nanoparticles at the level of gene expression potentiated down-regulation of Bcl-2, up regulation of Bax, and Smac/DIABLO leading to a decrease in mitochondrial membrane potential. Taken together, our results showed that 9-NC incorporated in PLGA-PEG 5% nanoparticles is able to induce apoptosis in A2780 human ovarian carcinoma cells and has the potential for the treatment of ovarian carcinoma.