Cargando…
Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex
Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585507/ https://www.ncbi.nlm.nih.gov/pubmed/25246512 http://dx.doi.org/10.1093/cercor/bhu210 |
_version_ | 1782392215755030528 |
---|---|
author | Shiner, T. Symmonds, M. Guitart-Masip, M. Fleming, S. M. Friston, K. J. Dolan, R. J. |
author_facet | Shiner, T. Symmonds, M. Guitart-Masip, M. Fleming, S. M. Friston, K. J. Dolan, R. J. |
author_sort | Shiner, T. |
collection | PubMed |
description | Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating the interaction between hedonic salience, dopamine, and response set shifting, distinct from effects on action learning or motor execution. We asked whether behavioral performance in response set shifting depends on the hedonic salience of reversal cues, by presenting these as null (neutral) or salient (monetary loss) outcomes. We observed marked effects of reversal cue salience on set-switching, with more efficient reversals following salient loss outcomes. l-Dopa degraded this discrimination, leading to inappropriate perseveration. Generic activation in thalamus, insula, and striatum preceded response set switches, with an opposite pattern in ventromedial prefrontal cortex (vmPFC). However, the behavioral effect of hedonic salience was reflected in differential vmPFC deactivation following salient relative to null reversal cues. l-Dopa reversed this pattern in vmPFC, suggesting that its behavioral effects are due to disruption of the stability and switching of firing patterns in prefrontal cortex. Our findings provide a potential neurobiological explanation for paradoxical phenomena, including maintenance of behavioral set despite negative outcomes, seen in impulse control disorders in Parkinson's disease. |
format | Online Article Text |
id | pubmed-4585507 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45855072015-09-29 Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex Shiner, T. Symmonds, M. Guitart-Masip, M. Fleming, S. M. Friston, K. J. Dolan, R. J. Cereb Cortex Articles Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating the interaction between hedonic salience, dopamine, and response set shifting, distinct from effects on action learning or motor execution. We asked whether behavioral performance in response set shifting depends on the hedonic salience of reversal cues, by presenting these as null (neutral) or salient (monetary loss) outcomes. We observed marked effects of reversal cue salience on set-switching, with more efficient reversals following salient loss outcomes. l-Dopa degraded this discrimination, leading to inappropriate perseveration. Generic activation in thalamus, insula, and striatum preceded response set switches, with an opposite pattern in ventromedial prefrontal cortex (vmPFC). However, the behavioral effect of hedonic salience was reflected in differential vmPFC deactivation following salient relative to null reversal cues. l-Dopa reversed this pattern in vmPFC, suggesting that its behavioral effects are due to disruption of the stability and switching of firing patterns in prefrontal cortex. Our findings provide a potential neurobiological explanation for paradoxical phenomena, including maintenance of behavioral set despite negative outcomes, seen in impulse control disorders in Parkinson's disease. Oxford University Press 2015-10 2014-09-21 /pmc/articles/PMC4585507/ /pubmed/25246512 http://dx.doi.org/10.1093/cercor/bhu210 Text en © The Author 2014. Published by Oxford University Press http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Shiner, T. Symmonds, M. Guitart-Masip, M. Fleming, S. M. Friston, K. J. Dolan, R. J. Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex |
title | Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex |
title_full | Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex |
title_fullStr | Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex |
title_full_unstemmed | Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex |
title_short | Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex |
title_sort | dopamine, salience, and response set shifting in prefrontal cortex |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585507/ https://www.ncbi.nlm.nih.gov/pubmed/25246512 http://dx.doi.org/10.1093/cercor/bhu210 |
work_keys_str_mv | AT shinert dopaminesalienceandresponsesetshiftinginprefrontalcortex AT symmondsm dopaminesalienceandresponsesetshiftinginprefrontalcortex AT guitartmasipm dopaminesalienceandresponsesetshiftinginprefrontalcortex AT flemingsm dopaminesalienceandresponsesetshiftinginprefrontalcortex AT fristonkj dopaminesalienceandresponsesetshiftinginprefrontalcortex AT dolanrj dopaminesalienceandresponsesetshiftinginprefrontalcortex |