Cargando…

Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted divinyl ether and its conversion into epoxyglycidyl propargyl ether

The reaction of epichlorohydrin with concentrated sodium hydroxide in hexane under phase transfer conditions has surprisingly led to the formation of the symmetrical di(3-epoxyglycidyl-1-propenyl) ether 1 which contains both nucleophilic and electrophilic moieties. When it was reacted with n-butylli...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Yiwu, Li, Zheng, Qiu, Yatao, Bai, Jinhong, Su, Jinyue, Zhang, Dayong, Jiang, Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585610/
https://www.ncbi.nlm.nih.gov/pubmed/26383123
http://dx.doi.org/10.1038/srep14231
Descripción
Sumario:The reaction of epichlorohydrin with concentrated sodium hydroxide in hexane under phase transfer conditions has surprisingly led to the formation of the symmetrical di(3-epoxyglycidyl-1-propenyl) ether 1 which contains both nucleophilic and electrophilic moieties. When it was reacted with n-butyllithium, intermediate 1 once again surprisingly generated epoxyglycidyl propargyl ether, which was further reacted in situ with a variety of benzaldehydes to furnish the corresponding substituted propargylic alcohols in good yields. While the reaction is operationally simple, it provides a powerful method for the synthesis of the important products from commodity materials such as epichlorohydrin. Moreover, these reactions may have revealed that some fundamental properties of the hydroxide anion in those once thought straightforward reactions are not well understood. A careful analysis of the experimental data suggests that an unprecedented concerted elimination of the epoxyglycidyl ether with sodium hydroxide may be operative and an alpha deprotonation followed by alpha elimination of the di(3-epoxyglycidyl-1-propenyl) ether with alkyllithium may have been involved.