Cargando…
Predicting the Lifetime of Dynamic Networks Experiencing Persistent Random Attacks
Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine t...
Autores principales: | Podobnik, Boris, Lipic, Tomislav, Horvatic, Davor, Majdandzic, Antonio, Bishop, Steven R., Eugene Stanley, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585692/ https://www.ncbi.nlm.nih.gov/pubmed/26387609 http://dx.doi.org/10.1038/srep14286 |
Ejemplares similares
-
Human-Centric AI: The Symbiosis of Human and Artificial Intelligence
por: Horvatić, Davor, et al.
Publicado: (2021) -
Benchmarking Attention-Based Interpretability of Deep Learning in Multivariate Time Series Predictions
por: Barić, Domjan, et al.
Publicado: (2021) -
Effects of quarantine disobedience and mobility restrictions on COVID-19 pandemic waves in dynamical networks
por: Stipic, Dorian, et al.
Publicado: (2021) -
The competitiveness versus the wealth of a country
por: Podobnik, Boris, et al.
Publicado: (2012) -
The microdynamics shaping the relationship between democracy and corruption
por: Podobnik, Boris, et al.
Publicado: (2022)