Cargando…

A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber

Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for computational tools that aid in the early diagnosis of thrombotic events, the integration of computational models of thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Pallarès, Jordi, Senan, Oriol, Guimerà, Roger, Vernet, Anton, Aguilar-Mogas, Antoni, Vilahur, Gemma, Badimon, Lina, Sales-Pardo, Marta, Cito, Salvatore
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585733/
https://www.ncbi.nlm.nih.gov/pubmed/26391513
http://dx.doi.org/10.1038/srep13606
_version_ 1782392264260059136
author Pallarès, Jordi
Senan, Oriol
Guimerà, Roger
Vernet, Anton
Aguilar-Mogas, Antoni
Vilahur, Gemma
Badimon, Lina
Sales-Pardo, Marta
Cito, Salvatore
author_facet Pallarès, Jordi
Senan, Oriol
Guimerà, Roger
Vernet, Anton
Aguilar-Mogas, Antoni
Vilahur, Gemma
Badimon, Lina
Sales-Pardo, Marta
Cito, Salvatore
author_sort Pallarès, Jordi
collection PubMed
description Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for computational tools that aid in the early diagnosis of thrombotic events, the integration of computational models of thrombus formation at different scales requires a comprehensive understanding of the role and limitation of each modelling approach. We propose three different modelling approaches to predict platelet deposition. Specifically, we consider measurements of platelet deposition under blood flow conditions in a perfusion chamber for different time periods (3, 5, 10, 20 and 30 minutes) at shear rates of 212 s(−1), 1390 s(−1) and 1690 s(−1). Our modelling approaches are: i) a model based on the mass-transfer boundary layer theory; ii) a machine-learning approach; and iii) a phenomenological model. The results indicate that the three approaches on average have median errors of 21%, 20.7% and 14.2%, respectively. Our study demonstrates the feasibility of using an empirical data set as a proxy for a real-patient scenario in which practitioners have accumulated data on a given number of patients and want to obtain a diagnosis for a new patient about whom they only have the current observation of a certain number of variables.
format Online
Article
Text
id pubmed-4585733
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-45857332015-09-29 A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber Pallarès, Jordi Senan, Oriol Guimerà, Roger Vernet, Anton Aguilar-Mogas, Antoni Vilahur, Gemma Badimon, Lina Sales-Pardo, Marta Cito, Salvatore Sci Rep Article Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for computational tools that aid in the early diagnosis of thrombotic events, the integration of computational models of thrombus formation at different scales requires a comprehensive understanding of the role and limitation of each modelling approach. We propose three different modelling approaches to predict platelet deposition. Specifically, we consider measurements of platelet deposition under blood flow conditions in a perfusion chamber for different time periods (3, 5, 10, 20 and 30 minutes) at shear rates of 212 s(−1), 1390 s(−1) and 1690 s(−1). Our modelling approaches are: i) a model based on the mass-transfer boundary layer theory; ii) a machine-learning approach; and iii) a phenomenological model. The results indicate that the three approaches on average have median errors of 21%, 20.7% and 14.2%, respectively. Our study demonstrates the feasibility of using an empirical data set as a proxy for a real-patient scenario in which practitioners have accumulated data on a given number of patients and want to obtain a diagnosis for a new patient about whom they only have the current observation of a certain number of variables. Nature Publishing Group 2015-09-22 /pmc/articles/PMC4585733/ /pubmed/26391513 http://dx.doi.org/10.1038/srep13606 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Pallarès, Jordi
Senan, Oriol
Guimerà, Roger
Vernet, Anton
Aguilar-Mogas, Antoni
Vilahur, Gemma
Badimon, Lina
Sales-Pardo, Marta
Cito, Salvatore
A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
title A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
title_full A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
title_fullStr A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
title_full_unstemmed A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
title_short A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
title_sort comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585733/
https://www.ncbi.nlm.nih.gov/pubmed/26391513
http://dx.doi.org/10.1038/srep13606
work_keys_str_mv AT pallaresjordi acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT senanoriol acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT guimeraroger acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT vernetanton acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT aguilarmogasantoni acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT vilahurgemma acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT badimonlina acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT salespardomarta acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT citosalvatore acomprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT pallaresjordi comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT senanoriol comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT guimeraroger comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT vernetanton comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT aguilarmogasantoni comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT vilahurgemma comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT badimonlina comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT salespardomarta comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber
AT citosalvatore comprehensivestudyondifferentmodellingapproachestopredictplateletdepositionratesinaperfusionchamber