Cargando…

Efficient single photon source based on μ-fibre-coupled tunable microcavity

Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved μ-fibre. Explo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chang-Min, Lim, Hee-Jin, Schneider, Christian, Maier, Sebastian, Höfling, Sven, Kamp, Martin, Lee, Yong-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585754/
https://www.ncbi.nlm.nih.gov/pubmed/26391607
http://dx.doi.org/10.1038/srep14309
Descripción
Sumario:Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved μ-fibre. Exploiting evanescent coupling between the μ-fibre and the cavity, a high collection efficiency of 23% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the μ-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD–cavity detuning.