Cargando…
Analyzing animal behavior via classifying each video frame using convolutional neural networks
High-throughput analysis of animal behavior requires software to analyze videos. Such software analyzes each frame individually, detecting animals’ body parts. But the image analysis rarely attempts to recognize “behavioral states”—e.g., actions or facial expressions—directly from the image instead...
Autores principales: | Stern, Ulrich, He, Ruo, Yang, Chung-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585819/ https://www.ncbi.nlm.nih.gov/pubmed/26394695 http://dx.doi.org/10.1038/srep14351 |
Ejemplares similares
-
CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit
por: Sen, Anik, et al.
Publicado: (2021) -
An effective behavior recognition method in the video session using convolutional neural network
por: Meng, Yizhen, et al.
Publicado: (2022) -
Utilizing convolutional neural networks to classify monkeypox skin lesions
por: Eliwa, Entesar Hamed I., et al.
Publicado: (2023) -
Detection of Appearance and Behavior Anomalies in Stationary Camera Videos Using Convolutional Neural Networks
por: Chen, H., et al.
Publicado: (2022) -
Single Camera Face Position-Invariant Driver’s Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks
por: Lollett, Catherine, et al.
Publicado: (2022)