Cargando…

Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs

Myostatin (MSTN) is a dominant inhibitor of skeletal muscle development and growth. Mutations in MSTN gene can lead to muscle hypertrophy or double-muscled (DM) phenotype in cattle, sheep, dog and human. However, there has not been reported significant muscle phenotypes in pigs in association with M...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Lili, Tang, Maoxue, Yang, Jinzeng, Wang, Qingqing, Cai, Chunbo, Jiang, Shengwang, Li, Hegang, Jiang, Ke, Gao, Pengfei, Ma, Dezun, Chen, Yaoxing, An, Xiaorong, Li, Kui, Cui, Wentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585837/
https://www.ncbi.nlm.nih.gov/pubmed/26400270
http://dx.doi.org/10.1038/srep14435
Descripción
Sumario:Myostatin (MSTN) is a dominant inhibitor of skeletal muscle development and growth. Mutations in MSTN gene can lead to muscle hypertrophy or double-muscled (DM) phenotype in cattle, sheep, dog and human. However, there has not been reported significant muscle phenotypes in pigs in association with MSTN mutations. Pigs are an important source of meat production, as well as serve as a preferred animal model for the studies of human disease. To study the impacts of MSTN mutations on skeletal muscle growth in pigs, we generated MSTN-mutant Meishan pigs with no marker gene via zinc finger nucleases (ZFN) technology. The MSTN-mutant pigs developed and grew normally, had increased muscle mass with decreased fat accumulation compared with wild type pigs, and homozygote MSTN mutant (MSTN(−/−)) pigs had apparent DM phenotype, and individual muscle mass increased by 100% over their wild-type controls (MSTN(+/+)) at eight months of age as a result of myofiber hyperplasia. Interestingly, 20% MSTN-mutant pigs had one extra thoracic vertebra. The MSTN-mutant pigs will not only offer a way of fast genetic improvement of lean meat for local fat-type indigenous pig breeds, but also serve as an important large animal model for biomedical studies of musculoskeletal formation, development and diseases.