Cargando…
Designing new strategy for controlling DNA orientation in biosensors
Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered met...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585838/ https://www.ncbi.nlm.nih.gov/pubmed/26400770 http://dx.doi.org/10.1038/srep14415 |
_version_ | 1782392288101531648 |
---|---|
author | Feng, Chao Ding, Hong-ming Ren, Chun-lai Ma, Yu-qiang |
author_facet | Feng, Chao Ding, Hong-ming Ren, Chun-lai Ma, Yu-qiang |
author_sort | Feng, Chao |
collection | PubMed |
description | Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered methods to control the DNA orientation. Here, we design a new strategy for controlling DNA orientation in biosensors. The main idea is to copolymerize DNA molecules with responsive polymers that can show swelling/deswelling transitions due to the change of external stimuli, and then graft the copolymers onto an uncharged substrate. In order to highlight the responsive characteristic, we take thermo-responsive polymers as an example, and reveal multi-responsive behavior and the underlying molecular mechanism of the DNA orientation by combining dissipative particle dynamics simulation and molecular theory. Since swelling/deswelling transitions can be also realized by using other stimuli-responsive (like pH and light) polymers, the present strategy is universal, which can enrich the methods of controlling DNA orientation and may assist with the design of the next generation of biosensors. |
format | Online Article Text |
id | pubmed-4585838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45858382015-09-29 Designing new strategy for controlling DNA orientation in biosensors Feng, Chao Ding, Hong-ming Ren, Chun-lai Ma, Yu-qiang Sci Rep Article Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered methods to control the DNA orientation. Here, we design a new strategy for controlling DNA orientation in biosensors. The main idea is to copolymerize DNA molecules with responsive polymers that can show swelling/deswelling transitions due to the change of external stimuli, and then graft the copolymers onto an uncharged substrate. In order to highlight the responsive characteristic, we take thermo-responsive polymers as an example, and reveal multi-responsive behavior and the underlying molecular mechanism of the DNA orientation by combining dissipative particle dynamics simulation and molecular theory. Since swelling/deswelling transitions can be also realized by using other stimuli-responsive (like pH and light) polymers, the present strategy is universal, which can enrich the methods of controlling DNA orientation and may assist with the design of the next generation of biosensors. Nature Publishing Group 2015-09-24 /pmc/articles/PMC4585838/ /pubmed/26400770 http://dx.doi.org/10.1038/srep14415 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Feng, Chao Ding, Hong-ming Ren, Chun-lai Ma, Yu-qiang Designing new strategy for controlling DNA orientation in biosensors |
title | Designing new strategy for controlling DNA orientation in biosensors |
title_full | Designing new strategy for controlling DNA orientation in biosensors |
title_fullStr | Designing new strategy for controlling DNA orientation in biosensors |
title_full_unstemmed | Designing new strategy for controlling DNA orientation in biosensors |
title_short | Designing new strategy for controlling DNA orientation in biosensors |
title_sort | designing new strategy for controlling dna orientation in biosensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585838/ https://www.ncbi.nlm.nih.gov/pubmed/26400770 http://dx.doi.org/10.1038/srep14415 |
work_keys_str_mv | AT fengchao designingnewstrategyforcontrollingdnaorientationinbiosensors AT dinghongming designingnewstrategyforcontrollingdnaorientationinbiosensors AT renchunlai designingnewstrategyforcontrollingdnaorientationinbiosensors AT mayuqiang designingnewstrategyforcontrollingdnaorientationinbiosensors |