Cargando…

Information content of contact-pattern representations and predictability of epidemic outbreaks

To understand the contact patterns of a population—who is in contact with whom, and when the contacts happen—is crucial for modeling outbreaks of infectious disease. Traditional theoretical epidemiology assumes that any individual can meet any with equal probability. A more modern approach, network...

Descripción completa

Detalles Bibliográficos
Autor principal: Holme, Petter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585889/
https://www.ncbi.nlm.nih.gov/pubmed/26403504
http://dx.doi.org/10.1038/srep14462
Descripción
Sumario:To understand the contact patterns of a population—who is in contact with whom, and when the contacts happen—is crucial for modeling outbreaks of infectious disease. Traditional theoretical epidemiology assumes that any individual can meet any with equal probability. A more modern approach, network epidemiology, assumes people are connected into a static network over which the disease spreads. Newer yet, temporal network epidemiology, includes the time in the contact representations. In this paper, we investigate the effect of these successive inclusions of more information. Using empirical proximity data, we study both outbreak sizes from unknown sources, and from known states of ongoing outbreaks. In the first case, there are large differences going from a fully mixed simulation to a network, and from a network to a temporal network. In the second case, differences are smaller. We interpret these observations in terms of the temporal network structure of the data sets. For example, a fast overturn of nodes and links seem to make the temporal information more important.