Cargando…

Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Yakovlev, Vladislav S., Stockman, Mark I., Krausz, Ferenc, Baum, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585944/
https://www.ncbi.nlm.nih.gov/pubmed/26412407
http://dx.doi.org/10.1038/srep14581
Descripción
Sumario:For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene.