Cargando…
Ethyl acetate fraction of Amomum xanthioides improves bile duct ligation-induced liver fibrosis of rat model via modulation of pro-fibrogenic cytokines
We investigated anti-hepatofibrotic effects of ethyl acetate fraction of Ammomum xanthoides (EFAX) using bile duct ligation (BDL)-induced hepatic fibrosis in a rat model. Male SD rats (6 weeks old) underwent BDL followed by 15 days of orall administration of EFAX (12.5, 25 or 50 mg/kg) or ursodeoxyc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585957/ https://www.ncbi.nlm.nih.gov/pubmed/26412144 http://dx.doi.org/10.1038/srep14531 |
Sumario: | We investigated anti-hepatofibrotic effects of ethyl acetate fraction of Ammomum xanthoides (EFAX) using bile duct ligation (BDL)-induced hepatic fibrosis in a rat model. Male SD rats (6 weeks old) underwent BDL followed by 15 days of orall administration of EFAX (12.5, 25 or 50 mg/kg) or ursodeoxycholic acid (25 mg/kg). BDL caused animal death, ascites formation, alterations in serum biochemistries, and severe hepatic injury with excessive collagen deposition, whereas EFAX treatment significantly attenuated these effects. BDL markedly increased the pro-fibrogenic cytokines (TGF-β, PDGF-β, and CTGF) and the extracellular matrix indicators α-SMA, TIMP-1 and collagen type 1 in hepatic proteins and gene expression levels, which were notably normalized by EFAX treatment. EFAX also markedly normalized pro-fibrogenic signaling molecules including Smad2/3, Smad7, Akt, p44/42, and p38. We further explored EFAX mechanisms of actions using LX-2 cells (human derived hepatic stellate cell line). Pre-treatment with EFAX drastically attenuated the activation of α-SMA and Smad2/3, which are downstream molecules of TGF-β. These findings suggest that EFAX may be a potent anti-hepatofibrotic agent, and its corresponding mechanisms primarily involve the modulation of pro-fibrogenic cytokines. |
---|