Cargando…

Competition between diagonal and off-diagonal coupling gives rise to charge-transfer states in polymeric solar cells

It has long been a puzzle on what drives charge separation in artificial polymeric solar cells as a consensus has yet to emerge among rivaling theories based upon electronic localization and delocalization pictures. Here we propose an alternative using the two-bath spin-boson model with simultaneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Yao, Zhou, Nengji, Prior, Javier, Zhao, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585960/
https://www.ncbi.nlm.nih.gov/pubmed/26412693
http://dx.doi.org/10.1038/srep14555
Descripción
Sumario:It has long been a puzzle on what drives charge separation in artificial polymeric solar cells as a consensus has yet to emerge among rivaling theories based upon electronic localization and delocalization pictures. Here we propose an alternative using the two-bath spin-boson model with simultaneous diagonal and off-diagonal coupling: the critical phase, which is born out of the competition of the two coupling types, and is neither localized nor delocalized. The decoherence-free feature of the critical phase also helps explain sustained coherence of the charge-transfer state. Exploiting Hamiltonian symmetries in an enhanced algorithm of density-matrix renormalization group, we map out boundaries of the critical phase to a precision previously unattainable, and determine the bath spectral densities inducive to the existence of the charge-transfer state.