Cargando…
Small Wonders—The Use of Nanoparticles for Delivering Antigen
Despite the discovery of many potential antigens for subunit vaccines, universal protection is often lacking due to the limitations of conventional delivery methods. Subunit vaccines primarily induce antibody-mediated humoral responses, whereas potent antigen-specific cellular responses are required...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586471/ https://www.ncbi.nlm.nih.gov/pubmed/26350599 http://dx.doi.org/10.3390/vaccines3030638 |
Sumario: | Despite the discovery of many potential antigens for subunit vaccines, universal protection is often lacking due to the limitations of conventional delivery methods. Subunit vaccines primarily induce antibody-mediated humoral responses, whereas potent antigen-specific cellular responses are required for prevention against some pathogenic infections. Nanoparticles have been utilised in nanomedicine and are promising candidates for vaccine or drug delivery. Nanoparticle vehicles have been demonstrated to be efficiently taken up by dendritic cells and induce humoral and cellular responses. This review provides an overview of nanoparticle vaccine development; in particular, the preparation of nanoparticles using a templating technique is highlighted, which would alleviate some of the disadvantages of existing nanoparticles. We will also explore the cellular fate of nanoparticle vaccines. Nanoparticle-based antigen delivery systems have the potential to develop new generation vaccines against currently unpreventable infectious diseases. |
---|