Cargando…

Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa

The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas ae...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yu, Gong, Ai-Jun, Qiu, Li-Na, Li, Jing-Rui, Li, Fu-Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586710/
https://www.ncbi.nlm.nih.gov/pubmed/26393637
http://dx.doi.org/10.3390/ijerph120911829
Descripción
Sumario:The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.