Cargando…
Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we sh...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586746/ https://www.ncbi.nlm.nih.gov/pubmed/26391658 http://dx.doi.org/10.1083/jcb.201501060 |
_version_ | 1782392424319942656 |
---|---|
author | Gopal, Sandeep Søgaard, Pernille Multhaupt, Hinke A.B. Pataki, Csilla Okina, Elena Xian, Xiaojie Pedersen, Mikael E. Stevens, Troy Griesbeck, Oliver Park, Pyong Woo Pocock, Roger Couchman, John R. |
author_facet | Gopal, Sandeep Søgaard, Pernille Multhaupt, Hinke A.B. Pataki, Csilla Okina, Elena Xian, Xiaojie Pedersen, Mikael E. Stevens, Troy Griesbeck, Oliver Park, Pyong Woo Pocock, Roger Couchman, John R. |
author_sort | Gopal, Sandeep |
collection | PubMed |
description | Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. |
format | Online Article Text |
id | pubmed-4586746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45867462016-03-28 Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels Gopal, Sandeep Søgaard, Pernille Multhaupt, Hinke A.B. Pataki, Csilla Okina, Elena Xian, Xiaojie Pedersen, Mikael E. Stevens, Troy Griesbeck, Oliver Park, Pyong Woo Pocock, Roger Couchman, John R. J Cell Biol Research Articles Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. The Rockefeller University Press 2015-09-28 /pmc/articles/PMC4586746/ /pubmed/26391658 http://dx.doi.org/10.1083/jcb.201501060 Text en © 2015 Gopal et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Gopal, Sandeep Søgaard, Pernille Multhaupt, Hinke A.B. Pataki, Csilla Okina, Elena Xian, Xiaojie Pedersen, Mikael E. Stevens, Troy Griesbeck, Oliver Park, Pyong Woo Pocock, Roger Couchman, John R. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
title | Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
title_full | Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
title_fullStr | Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
title_full_unstemmed | Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
title_short | Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
title_sort | transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586746/ https://www.ncbi.nlm.nih.gov/pubmed/26391658 http://dx.doi.org/10.1083/jcb.201501060 |
work_keys_str_mv | AT gopalsandeep transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT søgaardpernille transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT multhaupthinkeab transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT patakicsilla transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT okinaelena transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT xianxiaojie transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT pedersenmikaele transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT stevenstroy transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT griesbeckoliver transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT parkpyongwoo transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT pocockroger transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels AT couchmanjohnr transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels |