Cargando…

Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Gopal, Sandeep, Søgaard, Pernille, Multhaupt, Hinke A.B., Pataki, Csilla, Okina, Elena, Xian, Xiaojie, Pedersen, Mikael E., Stevens, Troy, Griesbeck, Oliver, Park, Pyong Woo, Pocock, Roger, Couchman, John R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586746/
https://www.ncbi.nlm.nih.gov/pubmed/26391658
http://dx.doi.org/10.1083/jcb.201501060
_version_ 1782392424319942656
author Gopal, Sandeep
Søgaard, Pernille
Multhaupt, Hinke A.B.
Pataki, Csilla
Okina, Elena
Xian, Xiaojie
Pedersen, Mikael E.
Stevens, Troy
Griesbeck, Oliver
Park, Pyong Woo
Pocock, Roger
Couchman, John R.
author_facet Gopal, Sandeep
Søgaard, Pernille
Multhaupt, Hinke A.B.
Pataki, Csilla
Okina, Elena
Xian, Xiaojie
Pedersen, Mikael E.
Stevens, Troy
Griesbeck, Oliver
Park, Pyong Woo
Pocock, Roger
Couchman, John R.
author_sort Gopal, Sandeep
collection PubMed
description Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
format Online
Article
Text
id pubmed-4586746
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-45867462016-03-28 Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels Gopal, Sandeep Søgaard, Pernille Multhaupt, Hinke A.B. Pataki, Csilla Okina, Elena Xian, Xiaojie Pedersen, Mikael E. Stevens, Troy Griesbeck, Oliver Park, Pyong Woo Pocock, Roger Couchman, John R. J Cell Biol Research Articles Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. The Rockefeller University Press 2015-09-28 /pmc/articles/PMC4586746/ /pubmed/26391658 http://dx.doi.org/10.1083/jcb.201501060 Text en © 2015 Gopal et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Research Articles
Gopal, Sandeep
Søgaard, Pernille
Multhaupt, Hinke A.B.
Pataki, Csilla
Okina, Elena
Xian, Xiaojie
Pedersen, Mikael E.
Stevens, Troy
Griesbeck, Oliver
Park, Pyong Woo
Pocock, Roger
Couchman, John R.
Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
title Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
title_full Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
title_fullStr Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
title_full_unstemmed Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
title_short Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
title_sort transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586746/
https://www.ncbi.nlm.nih.gov/pubmed/26391658
http://dx.doi.org/10.1083/jcb.201501060
work_keys_str_mv AT gopalsandeep transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT søgaardpernille transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT multhaupthinkeab transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT patakicsilla transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT okinaelena transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT xianxiaojie transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT pedersenmikaele transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT stevenstroy transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT griesbeckoliver transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT parkpyongwoo transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT pocockroger transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels
AT couchmanjohnr transmembraneproteoglycanscontrolstretchactivatedchannelstosetcytosoliccalciumlevels