Cargando…
The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip
In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587369/ https://www.ncbi.nlm.nih.gov/pubmed/26414006 http://dx.doi.org/10.1371/journal.pone.0138355 |
Sumario: | In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results. |
---|