Cargando…
Randomly and Non-Randomly Missing Renal Function Data in the Strong Heart Study: A Comparison of Imputation Methods
Kidney and cardiovascular disease are widespread among populations with high prevalence of diabetes, such as American Indians participating in the Strong Heart Study (SHS). Studying these conditions simultaneously in longitudinal studies is challenging, because the morbidity and mortality associated...
Autores principales: | Shara, Nawar, Yassin, Sayf A., Valaitis, Eduardas, Wang, Hong, Howard, Barbara V., Wang, Wenyu, Lee, Elisa T., Umans, Jason G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587557/ https://www.ncbi.nlm.nih.gov/pubmed/26414328 http://dx.doi.org/10.1371/journal.pone.0138923 |
Ejemplares similares
-
Hemoglobin A(1c), Fasting Glucose, and Cardiovascular Risk in a Population With High Prevalence of Diabetes: The Strong Heart Study
por: Wang, Hong, et al.
Publicado: (2011) -
Imputation strategies for missing binary outcomes in cluster randomized trials
por: Ma, Jinhui, et al.
Publicado: (2011) -
Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias
por: Curnow, Elinor, et al.
Publicado: (2023) -
Risk Factors and Prediction of Stroke in a Population with High Prevalence of Diabetes: The Strong Heart Study
por: Wang, Wenyu, et al.
Publicado: (2017) -
Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study
por: Shah, Anoop D., et al.
Publicado: (2014)