Cargando…
Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique
Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU) or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our prel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587744/ https://www.ncbi.nlm.nih.gov/pubmed/26418550 http://dx.doi.org/10.1371/journal.pone.0139178 |
_version_ | 1782392507300052992 |
---|---|
author | Pichardo, Samuel Silva, Rafael R. C. Rubel, Oleg Curiel, Laura |
author_facet | Pichardo, Samuel Silva, Rafael R. C. Rubel, Oleg Curiel, Laura |
author_sort | Pichardo, Samuel |
collection | PubMed |
description | Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU) or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13):135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode). The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d.) resonance frequency of the samples was 465.1 (± 1.5) kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power) of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field. |
format | Online Article Text |
id | pubmed-4587744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45877442015-10-02 Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique Pichardo, Samuel Silva, Rafael R. C. Rubel, Oleg Curiel, Laura PLoS One Research Article Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU) or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13):135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode). The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d.) resonance frequency of the samples was 465.1 (± 1.5) kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power) of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field. Public Library of Science 2015-09-29 /pmc/articles/PMC4587744/ /pubmed/26418550 http://dx.doi.org/10.1371/journal.pone.0139178 Text en © 2015 Pichardo et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Pichardo, Samuel Silva, Rafael R. C. Rubel, Oleg Curiel, Laura Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique |
title | Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique |
title_full | Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique |
title_fullStr | Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique |
title_full_unstemmed | Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique |
title_short | Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique |
title_sort | efficient driving of piezoelectric transducers using a biaxial driving technique |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587744/ https://www.ncbi.nlm.nih.gov/pubmed/26418550 http://dx.doi.org/10.1371/journal.pone.0139178 |
work_keys_str_mv | AT pichardosamuel efficientdrivingofpiezoelectrictransducersusingabiaxialdrivingtechnique AT silvarafaelrc efficientdrivingofpiezoelectrictransducersusingabiaxialdrivingtechnique AT rubeloleg efficientdrivingofpiezoelectrictransducersusingabiaxialdrivingtechnique AT curiellaura efficientdrivingofpiezoelectrictransducersusingabiaxialdrivingtechnique |