Cargando…
Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy
Hyperglycemia in diabetic mothers enhances the risk of fetal cardiac hypertrophy during gestation. However, the mechanism of high-glucose-induced cardiac hypertrophy is not largely understood. In this study, we first demonstrated that the incidence rate of cardiac hypertrophy dramatically increased...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587747/ https://www.ncbi.nlm.nih.gov/pubmed/26418041 http://dx.doi.org/10.1371/journal.pone.0139141 |
_version_ | 1782392507970093056 |
---|---|
author | Han, Sha-sha Wang, Guang Jin, Ya Ma, Zheng-lai Jia, Wei-jing Wu, Xia Wang, Xiao-yu He, Mei-yao Cheng, Xin Li, Wei-jing Yang, Xuesong Liu, Guo-sheng |
author_facet | Han, Sha-sha Wang, Guang Jin, Ya Ma, Zheng-lai Jia, Wei-jing Wu, Xia Wang, Xiao-yu He, Mei-yao Cheng, Xin Li, Wei-jing Yang, Xuesong Liu, Guo-sheng |
author_sort | Han, Sha-sha |
collection | PubMed |
description | Hyperglycemia in diabetic mothers enhances the risk of fetal cardiac hypertrophy during gestation. However, the mechanism of high-glucose-induced cardiac hypertrophy is not largely understood. In this study, we first demonstrated that the incidence rate of cardiac hypertrophy dramatically increased in fetuses of diabetic mothers using color ultrasound examination. In addition, human fetal cardiac hypertrophy was successfully mimicked in a streptozotocin (STZ)-induced diabetes mouse model, in which mouse cardiac hypertrophy was diagnosed using type-M ultrasound and a histological assay. PH3 immunofluorescent staining of mouse fetal hearts and in vitro-cultured H9c2 cells indicated that cell proliferation decreased in E18.5, E15.5 and E13.5 mice, and cell apoptosis in H9c2 cells increased in the presence of high glucose in a dose-dependent manner. Next, we found that the individual cardiomyocyte size increased in pre-gestational diabetes mellitus mice and in response to high glucose exposure. Meanwhile, the expression of β-MHC and BMP-10 was up-regulated. Nkx2.5 immunofluorescent staining showed that the expression of Nkx2.5, a crucial cardiac transcription factor, was suppressed in the ventricular septum, left ventricular wall and right ventricular wall of E18.5, E15.5 and E13.5 mouse hearts. However, cardiac hypertrophy did not morphologically occur in E13.5 mouse hearts. In cultured H9c2 cells exposed to high glucose, Nkx2.5 expression decreased, as detected by both immunostaining and western blotting, and the expression of KCNE1 and Cx43 was also restricted. Taken together, alterations in cell size rather than cell proliferation or apoptosis are responsible for hyperglycemia-induced fetal cardiac hypertrophy. The aberrant expression of Nkx2.5 and its regulatory target genes in the presence of high glucose could be a principal component of pathogenesis in the development of fetal cardiac hypertrophy. |
format | Online Article Text |
id | pubmed-4587747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45877472015-10-02 Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy Han, Sha-sha Wang, Guang Jin, Ya Ma, Zheng-lai Jia, Wei-jing Wu, Xia Wang, Xiao-yu He, Mei-yao Cheng, Xin Li, Wei-jing Yang, Xuesong Liu, Guo-sheng PLoS One Research Article Hyperglycemia in diabetic mothers enhances the risk of fetal cardiac hypertrophy during gestation. However, the mechanism of high-glucose-induced cardiac hypertrophy is not largely understood. In this study, we first demonstrated that the incidence rate of cardiac hypertrophy dramatically increased in fetuses of diabetic mothers using color ultrasound examination. In addition, human fetal cardiac hypertrophy was successfully mimicked in a streptozotocin (STZ)-induced diabetes mouse model, in which mouse cardiac hypertrophy was diagnosed using type-M ultrasound and a histological assay. PH3 immunofluorescent staining of mouse fetal hearts and in vitro-cultured H9c2 cells indicated that cell proliferation decreased in E18.5, E15.5 and E13.5 mice, and cell apoptosis in H9c2 cells increased in the presence of high glucose in a dose-dependent manner. Next, we found that the individual cardiomyocyte size increased in pre-gestational diabetes mellitus mice and in response to high glucose exposure. Meanwhile, the expression of β-MHC and BMP-10 was up-regulated. Nkx2.5 immunofluorescent staining showed that the expression of Nkx2.5, a crucial cardiac transcription factor, was suppressed in the ventricular septum, left ventricular wall and right ventricular wall of E18.5, E15.5 and E13.5 mouse hearts. However, cardiac hypertrophy did not morphologically occur in E13.5 mouse hearts. In cultured H9c2 cells exposed to high glucose, Nkx2.5 expression decreased, as detected by both immunostaining and western blotting, and the expression of KCNE1 and Cx43 was also restricted. Taken together, alterations in cell size rather than cell proliferation or apoptosis are responsible for hyperglycemia-induced fetal cardiac hypertrophy. The aberrant expression of Nkx2.5 and its regulatory target genes in the presence of high glucose could be a principal component of pathogenesis in the development of fetal cardiac hypertrophy. Public Library of Science 2015-09-29 /pmc/articles/PMC4587747/ /pubmed/26418041 http://dx.doi.org/10.1371/journal.pone.0139141 Text en © 2015 Han et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Han, Sha-sha Wang, Guang Jin, Ya Ma, Zheng-lai Jia, Wei-jing Wu, Xia Wang, Xiao-yu He, Mei-yao Cheng, Xin Li, Wei-jing Yang, Xuesong Liu, Guo-sheng Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy |
title | Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy |
title_full | Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy |
title_fullStr | Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy |
title_full_unstemmed | Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy |
title_short | Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy |
title_sort | investigating the mechanism of hyperglycemia-induced fetal cardiac hypertrophy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587747/ https://www.ncbi.nlm.nih.gov/pubmed/26418041 http://dx.doi.org/10.1371/journal.pone.0139141 |
work_keys_str_mv | AT hanshasha investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT wangguang investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT jinya investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT mazhenglai investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT jiaweijing investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT wuxia investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT wangxiaoyu investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT hemeiyao investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT chengxin investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT liweijing investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT yangxuesong investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy AT liuguosheng investigatingthemechanismofhyperglycemiainducedfetalcardiachypertrophy |