Cargando…
Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation
Micro-blogging services, such as Twitter, offer opportunities to analyse user behaviour. Discovering and distinguishing behavioural patterns in micro-blogging services is valuable. However, it is difficult and challenging to distinguish users, and to track the temporal development of collective atte...
Autores principales: | Saito, Shota, Hirata, Yoshito, Sasahara, Kazutoshi, Suzuki, Hideyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587956/ https://www.ncbi.nlm.nih.gov/pubmed/26417999 http://dx.doi.org/10.1371/journal.pone.0139085 |
Ejemplares similares
-
Bayesian Inference for Nonnegative Matrix Factorisation Models
por: Cemgil, Ali Taylan
Publicado: (2009) -
Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation
por: FitzGerald, Derry, et al.
Publicado: (2008) -
Classification of Copper Minerals by Handheld Laser-Induced Breakdown Spectroscopy and Nonnegative Tensor Factorisation
por: Wójcik, Michał, et al.
Publicado: (2020) -
Quantifying Collective Attention from Tweet Stream
por: Sasahara, Kazutoshi, et al.
Publicado: (2013) -
Correction: Quantifying Collective Attention from Tweet
Stream
por: Sasahara, Kazutoshi, et al.
Publicado: (2013)