Cargando…
Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model
The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated wi...
Autores principales: | Zhang, Naiqian, Wang, Haiyun, Fang, Yun, Wang, Jun, Zheng, Xiaoqi, Liu, X. Shirley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587957/ https://www.ncbi.nlm.nih.gov/pubmed/26418249 http://dx.doi.org/10.1371/journal.pcbi.1004498 |
Ejemplares similares
-
Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection
por: Dong, Zuoli, et al.
Publicado: (2015) -
DISIS: Prediction of Drug Response through an Iterative Sure Independence Screening
por: Fang, Yun, et al.
Publicado: (2015) -
A Network Flow-Based Method to Predict Anticancer Drug Sensitivity
por: Qin, Yufang, et al.
Publicado: (2015) -
Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model
por: Wei, Dong, et al.
Publicado: (2019) -
An Integrative Pharmacogenomic Approach Identifies Two-drug Combination Therapies for Personalized Cancer Medicine
por: Liu, Yin, et al.
Publicado: (2016)