Cargando…
Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis
BACKGROUND AND AIMS: Tree diameter, tree height and canopy closure have been described by previous meta-analyses as being important characteristics in roost selection by cavity-roosting bats. However, size and direction of effects for these characteristics varied greatly among studies, also referred...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587962/ https://www.ncbi.nlm.nih.gov/pubmed/26418465 http://dx.doi.org/10.1371/journal.pone.0139126 |
_version_ | 1782392550417498112 |
---|---|
author | Fabianek, François Simard, Marie Anouk Desrochers, André |
author_facet | Fabianek, François Simard, Marie Anouk Desrochers, André |
author_sort | Fabianek, François |
collection | PubMed |
description | BACKGROUND AND AIMS: Tree diameter, tree height and canopy closure have been described by previous meta-analyses as being important characteristics in roost selection by cavity-roosting bats. However, size and direction of effects for these characteristics varied greatly among studies, also referred to as heterogeneity. Potential sources of heterogeneity have not been investigated in previous meta-analyses, which are explored by correlating additional covariates (moderator variables). We tested whether effect sizes from 34 studies were consistent enough to reject the null hypothesis that trees selected by bats did not significantly differ in their characteristics from randomly selected trees. We also examined whether heterogeneity in tree diameter effect sizes was correlated to moderator variables such as sex, bat species, habitat type, elevation and mean summer temperature. METHODS: We used Hedges’ g standardized mean difference as the effect size for the most common characteristics that were encountered in the literature. We estimated heterogeneity indices, potential publication bias, and spatial autocorrelation of our meta-data. We relied upon meta-regression and multi-model inference approaches to evaluate the effects of moderator variables on heterogeneity in tree diameter effect sizes. RESULTS: Tree diameter, tree height, snag density, elevation, and canopy closure were significant characteristics of roost selection by cavity-roosting bats. Size and direction of effects varied greatly among studies with respect to distance to water, tree density, slope, and bark remaining on trunks. Inclusion of mean summer temperature and sex in meta-regressions further explained heterogeneity in tree diameter effect sizes. CONCLUSIONS: Regional differences in roost selection for tree diameter were related to mean summer temperature. Large diameter trees play a central role in roost selection by bats, especially in colder regions, where they are likely to provide a warm and stable microclimate for reproductive females. Records of summer temperature fluctuations inside and outside tree cavities that are used by bats should be included in future research. |
format | Online Article Text |
id | pubmed-4587962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45879622015-10-02 Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis Fabianek, François Simard, Marie Anouk Desrochers, André PLoS One Research Article BACKGROUND AND AIMS: Tree diameter, tree height and canopy closure have been described by previous meta-analyses as being important characteristics in roost selection by cavity-roosting bats. However, size and direction of effects for these characteristics varied greatly among studies, also referred to as heterogeneity. Potential sources of heterogeneity have not been investigated in previous meta-analyses, which are explored by correlating additional covariates (moderator variables). We tested whether effect sizes from 34 studies were consistent enough to reject the null hypothesis that trees selected by bats did not significantly differ in their characteristics from randomly selected trees. We also examined whether heterogeneity in tree diameter effect sizes was correlated to moderator variables such as sex, bat species, habitat type, elevation and mean summer temperature. METHODS: We used Hedges’ g standardized mean difference as the effect size for the most common characteristics that were encountered in the literature. We estimated heterogeneity indices, potential publication bias, and spatial autocorrelation of our meta-data. We relied upon meta-regression and multi-model inference approaches to evaluate the effects of moderator variables on heterogeneity in tree diameter effect sizes. RESULTS: Tree diameter, tree height, snag density, elevation, and canopy closure were significant characteristics of roost selection by cavity-roosting bats. Size and direction of effects varied greatly among studies with respect to distance to water, tree density, slope, and bark remaining on trunks. Inclusion of mean summer temperature and sex in meta-regressions further explained heterogeneity in tree diameter effect sizes. CONCLUSIONS: Regional differences in roost selection for tree diameter were related to mean summer temperature. Large diameter trees play a central role in roost selection by bats, especially in colder regions, where they are likely to provide a warm and stable microclimate for reproductive females. Records of summer temperature fluctuations inside and outside tree cavities that are used by bats should be included in future research. Public Library of Science 2015-09-29 /pmc/articles/PMC4587962/ /pubmed/26418465 http://dx.doi.org/10.1371/journal.pone.0139126 Text en © 2015 Fabianek et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fabianek, François Simard, Marie Anouk Desrochers, André Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis |
title | Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis |
title_full | Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis |
title_fullStr | Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis |
title_full_unstemmed | Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis |
title_short | Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis |
title_sort | exploring regional variation in roost selection by bats: evidence from a meta-analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587962/ https://www.ncbi.nlm.nih.gov/pubmed/26418465 http://dx.doi.org/10.1371/journal.pone.0139126 |
work_keys_str_mv | AT fabianekfrancois exploringregionalvariationinroostselectionbybatsevidencefromametaanalysis AT simardmarieanouk exploringregionalvariationinroostselectionbybatsevidencefromametaanalysis AT desrochersandre exploringregionalvariationinroostselectionbybatsevidencefromametaanalysis |