Cargando…
Ciliary/Flagellar Protein Ubiquitination
Cilia/flagella are conserved eukaryotic organelles that play an important role in the control of cell motility and detection of environmental cues. However, the molecular mechanisms underlying ciliary/flagellar assembly, maintenance, disassembly, and signal transduction are not yet completely unders...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588046/ https://www.ncbi.nlm.nih.gov/pubmed/26404382 http://dx.doi.org/10.3390/cells4030474 |
Sumario: | Cilia/flagella are conserved eukaryotic organelles that play an important role in the control of cell motility and detection of environmental cues. However, the molecular mechanisms underlying ciliary/flagellar assembly, maintenance, disassembly, and signal transduction are not yet completely understood. Recent studies demonstrated that post-translational modifications (PTMs) such as phosphorylation, methylation, glutamylation, and ubiquitination are involved in these processes. In this mini review, we present a summary of research progress in ciliary/flagellar protein ubiquitination, including the ubiquitin conjugation system identified by proteomics as well as the role of ciliary/flagellar protein ubiquitination in flagellar disassembly, motility, and signal transduction. Moreover, we described putative further research directions in the study of ciliary/flagellar protein ubiquitination. |
---|