Cargando…

Evidence of a MOF histone acetyltransferase-containing NSL complex in C. elegans

Regulation of chromatin is a key process in the developmental control of gene expression. Many multi-subunit protein complexes have been found to regulate chromatin through the modification of histone residues. One such complex is the MOF histone acetyltransferase-containing NSL complex. While the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoe, Matthew, Nicholas, Hannah R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588387/
https://www.ncbi.nlm.nih.gov/pubmed/26430553
http://dx.doi.org/10.4161/21624054.2014.982967
Descripción
Sumario:Regulation of chromatin is a key process in the developmental control of gene expression. Many multi-subunit protein complexes have been found to regulate chromatin through the modification of histone residues. One such complex is the MOF histone acetyltransferase-containing NSL complex. While the composition of the human and Drosophila NSL complexes has been determined and the functions of these complexes investigated, the existence of an equivalent complex in nematodes such as Caenorhabditis elegans has not yet been explored. Here we summarise evidence, from our own work and that of others, that homologues of NSL complex components are found in C. elegans. We review data suggesting that nematode proteins SUMV-1 and SUMV-2 are homologous to NSL2 and NSL3, respectively, and that SUMV-1 and SUMV-2 may form a complex with MYS-2, the worm homolog of MOF. We propose that these interactions suggest the existence of a nematode NSL-like complex and discuss the roles of this putative NSL complex in worms as well as exploring the possibility of crosstalk between NSL and COMPASS complexes via components that are common to both. We present the groundwork from which a full characterization of a nematode NSL complex may begin.