Cargando…

Logical error rate in the Pauli twirling approximation

The performance of error correction protocols are necessary for understanding the operation of potential quantum computers, but this requires physical error models that can be simulated efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error models. Of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Katabarwa, Amara, Geller, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588586/
https://www.ncbi.nlm.nih.gov/pubmed/26419417
http://dx.doi.org/10.1038/srep14670
Descripción
Sumario:The performance of error correction protocols are necessary for understanding the operation of potential quantum computers, but this requires physical error models that can be simulated efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error models. Of these, one of the simplest is the Pauli twirling approximation (PTA), which is obtained by twirling an arbitrary completely positive error channel over the Pauli basis, resulting in a Pauli channel. In this work, we test the PTA’s accuracy at predicting the logical error rate by simulating the 5-qubit code using a 9-qubit circuit with realistic decoherence and unitary gate errors. We find evidence for good agreement with exact simulation, with the PTA overestimating the logical error rate by a factor of 2 to 3. Our results suggest that the PTA is a reliable predictor of the logical error rate, at least for low-distance codes.