Cargando…
Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii
Extrafloral nectar (EFN) mediates food‐for‐protection mutualisms between plants and insects and provides plants with a form of indirect defense against herbivory. Understanding sources of variation in EFN production is important because such variations affect the number and identity of insect visito...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588640/ https://www.ncbi.nlm.nih.gov/pubmed/26445662 http://dx.doi.org/10.1002/ece3.1644 |
_version_ | 1782392661868544000 |
---|---|
author | Jones, Ian M. Koptur, Suzanne |
author_facet | Jones, Ian M. Koptur, Suzanne |
author_sort | Jones, Ian M. |
collection | PubMed |
description | Extrafloral nectar (EFN) mediates food‐for‐protection mutualisms between plants and insects and provides plants with a form of indirect defense against herbivory. Understanding sources of variation in EFN production is important because such variations affect the number and identity of insect visitors and the effectiveness of plant defense. Light represents a potentially crucial tool for regulating resource allocation to defense, as it not only contributes energy but may help plants to anticipate future conditions. Low red/far‐red (R/FR) light ratios can act as a signal of the proximity of competing plants. Exposure to such light ratios has been shown to promote competitive behaviors that coincide with reduced resource allocation to direct chemical defenses. Little is known, however, about how such informational light signals might affect indirect defenses such as EFN, and the interactions that they mediate. Through controlled glasshouse experiments, we investigated the effects of light intensity, and R/FR light ratios, on EFN production in Senna mexicana var. chapmanii. Plants in light‐limited conditions produced significantly less EFN, and leaf damage elicited increased EFN production regardless of light conditions. Ratios of R/FR light, however, did not appear to affect EFN production in either damaged or undamaged plants. Understanding the effects of light on indirect defenses is of particular importance for plants in the threatened pine rockland habitats of south Florida, where light conditions are changing in predictable ways following extensive fragmentation and subsequent mismanagement. Around 27% of species in these habitats produce EFN and may rely on insect communities for defense. |
format | Online Article Text |
id | pubmed-4588640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45886402015-10-06 Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii Jones, Ian M. Koptur, Suzanne Ecol Evol Original Research Extrafloral nectar (EFN) mediates food‐for‐protection mutualisms between plants and insects and provides plants with a form of indirect defense against herbivory. Understanding sources of variation in EFN production is important because such variations affect the number and identity of insect visitors and the effectiveness of plant defense. Light represents a potentially crucial tool for regulating resource allocation to defense, as it not only contributes energy but may help plants to anticipate future conditions. Low red/far‐red (R/FR) light ratios can act as a signal of the proximity of competing plants. Exposure to such light ratios has been shown to promote competitive behaviors that coincide with reduced resource allocation to direct chemical defenses. Little is known, however, about how such informational light signals might affect indirect defenses such as EFN, and the interactions that they mediate. Through controlled glasshouse experiments, we investigated the effects of light intensity, and R/FR light ratios, on EFN production in Senna mexicana var. chapmanii. Plants in light‐limited conditions produced significantly less EFN, and leaf damage elicited increased EFN production regardless of light conditions. Ratios of R/FR light, however, did not appear to affect EFN production in either damaged or undamaged plants. Understanding the effects of light on indirect defenses is of particular importance for plants in the threatened pine rockland habitats of south Florida, where light conditions are changing in predictable ways following extensive fragmentation and subsequent mismanagement. Around 27% of species in these habitats produce EFN and may rely on insect communities for defense. John Wiley and Sons Inc. 2015-09-04 /pmc/articles/PMC4588640/ /pubmed/26445662 http://dx.doi.org/10.1002/ece3.1644 Text en © 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Jones, Ian M. Koptur, Suzanne Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii |
title | Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii
|
title_full | Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii
|
title_fullStr | Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii
|
title_full_unstemmed | Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii
|
title_short | Quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii
|
title_sort | quantity over quality: light intensity, but not red/far‐red ratio, affects extrafloral nectar production in senna mexicana var. chapmanii |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588640/ https://www.ncbi.nlm.nih.gov/pubmed/26445662 http://dx.doi.org/10.1002/ece3.1644 |
work_keys_str_mv | AT jonesianm quantityoverqualitylightintensitybutnotredfarredratioaffectsextrafloralnectarproductioninsennamexicanavarchapmanii AT koptursuzanne quantityoverqualitylightintensitybutnotredfarredratioaffectsextrafloralnectarproductioninsennamexicanavarchapmanii |